Archiv der Mathematik

, Volume 110, Issue 5, pp 421–426 | Cite as

On the orders of the non-Frattini elements of a finite group

  • Andrea Lucchini


Let G be a finite group and let \(p_1,\dots ,p_n\) be distinct primes. If G contains an element of order \(p_1 \cdots p_n,\) then there is an element in G which is not contained in the Frattini subgroup of G and whose order is divisible by \(p_1 \cdots p_n.\)


Prime graph Non-Frattini elements Non-Frattini prime graph Generating sets. 

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Dixon, Random sets which invariably generate the symmetric group, Discrete Math. 105 (1992), 25–39.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    R. Guralnick, W. Kantor, M. Kassabov, and A. Lubotzky, Presentations of finite simple groups: profinite and cohomological approaches, Groups Geom. Dyn. 1 (2007), 469–523.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    B. Huppert, Endliche Gruppen, Grundlehren der Mathematischen Wissenschaften, 134, Springer-Verlag, Berlin-New York, 1967.Google Scholar
  4. 4.
    W. M. Kantor, A. Lubotzky, and A. Shalev, Invariable generation and the Chebotarev invariant of a finite group, J. Algebra 348 (2011), 302–314.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A.S. Kondrat’ev, On prime graph components of finite simple groups, Math. USSR-Sb. 67 (1990), 235–247.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    L. G. Kovács, J. Neubüser, and B. H. Neumann, On finite groups with “hidden” primes, J. Austral. Math. Soc. 12 (1971), 287–300.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    D. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1993.Google Scholar
  8. 8.
    J.S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), 487–513.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A.V. Zavarnitsine, On the recognition of finite groups by the prime graph, Algebra Logic 45 (2006), 220–231.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica “Tullio Levi-Civita”Università degli Studi di PadovaPaduaItaly

Personalised recommendations