Skip to main content
Log in

On the number of monic integer polynomials with given signature

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we show that the number of monic integer polynomials of degree \(d \ge 1\) and height at most H which have no real roots is between \(c_1H^{d-1/2}\) and \(c_2 H^{d-1/2}\), where the constants \(c_2>c_1>0\) depend only on d. (Of course, this situation may only occur for d even.) Furthermore, for each integer s satisfying \(0 \le s < d/2\) we show that the number of monic integer polynomials of degree d and height at most H which have precisely 2s non-real roots is asymptotic to \(\lambda (d,s)H^{d}\) as \(H \rightarrow \infty \). The constants \(\lambda (d,s)\) are all positive and come from a recent paper of Bertók, Hajdu, and Pethő. They considered a similar question for general (not necessarily monic) integer polynomials and posed this as an open question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Akiyama, H. Brunotte, A. Pethő, and J. Thuswaldner, Generalized radix representations and dynamical systems. III, Osaka J. Math. 45 (2008), 347–374.

    MathSciNet  MATH  Google Scholar 

  2. S. Akiyama and A. Pethő, On the distribution of polynomials with bounded roots, I. Polynomials with real coefficients, J. Math. Soc. Japan 66 (2014), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Akiyama and A. Pethő, The distribution of polynomials with bounded roots, II. Polynomials with integer coefficients, Unif. Distrib. Theory 9 (2014), 5–19.

    MathSciNet  MATH  Google Scholar 

  4. C. Bertók, L. Hajdu, and A. Pethő, On the distribution of polynomials with bounded height, J. Number Theory 179 (2017), 172–184.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Chela, Reducible polynomials, J. Lond. Math. Soc. 38 (1963), 183–188.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Chern and J. D. Vaaler, The distribution of values of Mahler’s measure, J. Reine Angew. Math. 540 (2001), 1–47.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Dörge, Abschätzung der Anzahl der reduziblen Polynome, Math. Ann. 160 (1965), 59–63.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Dubickas, On the number of reducible polynomials of bounded naive height, Manuscripta Math. 144 (2014), 439–456.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Dubickas, Counting integer reducible polynomials with bounded measure, Appl. Anal. Discrete Math. 10 (2016), 308–324.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Dubickas and M. Sha, Counting and testing dominant polynomials, Exper. Math. 24 (2015), 312–325.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Dubickas and M. Sha, Positive density of integer polynomials with some prescribed properties, J. Number Theory 159 (2016), 27–44.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Kirschenhofer and M. Weitzer, A number theoretic problem on the distribution of polynomials with bounded roots, Integers 15 (2015), A10.

    MathSciNet  MATH  Google Scholar 

  13. G. Kuba, On the distribution of reducible polynomials, Math. Slovaca, 59 (2009), 349–356.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Madritsch and A. Pethő, A note on generalized radix representations and dynamical systems, Osaka J. Math. 50 (2013), 817–825.

    MathSciNet  MATH  Google Scholar 

  15. G. Pólya and G. Szegö, Problems and Theorems in Analysis, Vol. II, Springer, Berlin-Heidelberg-New York, 1976.

    Book  MATH  Google Scholar 

  16. W. Specht, Zur Zahlentheorie der Polynome. IV, Math. Z. 57 (1953), 291–335.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. L. van der Waerden, Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt, Monatsh. Mat. Phys. 43 (1936), 133–147.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups. Transcendence Properties of the Exponential function in Several Variables, Grundlehren der Mathematischen Wissenschaften, 326, Springer, Berlin, 2000.

Download references

Acknowledgements

This research was funded by a Grant (No. S-MIP-17-66/LSS-110000-1274) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artūras Dubickas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubickas, A. On the number of monic integer polynomials with given signature. Arch. Math. 110, 333–342 (2018). https://doi.org/10.1007/s00013-017-1133-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-017-1133-1

Keywords

Mathematics Subject Classification

Navigation