Skip to main content
Log in

A toy Neumann analogue of the nodal line conjecture

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We introduce an analogue of Payne’s nodal line conjecture, which asserts that the nodal (zero) set of any eigenfunction associated with the second eigenvalue of the Dirichlet Laplacian on a bounded planar domain should reach the boundary of the domain. The assertion here is that any eigenfunction associated with the first nontrivial eigenvalue of the Neumann Laplacian on a domain \(\Omega \) with rotational symmetry of order two (i.e. \(x\in \Omega \) iff \(-x\in \Omega \)) “should normally” be rotationally antisymmetric. We give both positive and negative results which highlight the heuristic similarity of this assertion to the nodal line conjecture, while demonstrating that the extra structure of the problem makes it easier to obtain stronger statements: it is true for all simply connected planar domains, while there is a counterexample domain homeomorphic to a disk with two holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th printing, National Bureau of Standards Applied Mathematics Series 55, U.S. Government Printing Office, Washington, DC, 1972.

  2. G. Alessandrini, Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains, Comment. Math. Helvetici 69 (1994), 142–154.

    Article  MathSciNet  MATH  Google Scholar 

  3. T.V. Anoop, P. Drábek, and S. Sasi, On the structure of the second eigenfunctions of the \(p\)-Laplacian on a ball, Proc. Amer. Math. Soc. 144 (2016), 2503–2512.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Bobkov and P. Drábek, On some unexpected properties of radial and symmetric eigenvalues and eigenfunctions of the \(p\)-Laplacian on a disk, J. Differential Equations 264 (2017), 1755–1772.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Brasco, C. Nitsch, and C. Trombetti, An inequality à la Szegő–Weinberger for the \(p\)-Laplacian on convex sets, Commun. Contemp. Math. 18 (2016), 1550086.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Fournais, The nodal surface of the second eigenfunction of the Laplacian in \({{\bf R}}^D\) can be closed, J. Differential Equations 173 (2001), 145–159.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Freitas and D. Krejčiřík, Location of the nodal set for thin curved tubes, Indiana Univ. Math. J. 57 (2008), 343–375.

    Article  MathSciNet  MATH  Google Scholar 

  8. D.S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions, SIAM Rev. 55 (2013), 601–667.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Helffer, On spectral minimal partitions: a survey, Milan J. Math. 78 (2010), 575–590.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Helffer and T. Hoffmann-Ostenhof, A review on large \(k\) minimal spectral \(k\)-partitions and Pleijel’s theorem, Spectral theory and partial differential equations, 39–57, Contemp. Math., 640, American Mathematical Society, Providence, RI, 2015.

  11. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and N. Nadirashvili, The nodal line of the second eigenfunction of the Laplacian in \({{\bf R}}^2\) can be closed, Duke Math. J. 90 (1997), 631–640.

    Article  MathSciNet  MATH  Google Scholar 

  12. J.B. Kennedy, Closed nodal surfaces for simply connected domains in higher dimensions, Indiana Univ. Math. J. 62 (2013), 785–798.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. D. Melas, On the nodal line of the second eigenfunction of the Laplacian in \(\mathbb{R}^2\), J. Differential Geom. 35 (1992), 255–263.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. E. Payne, Isoperimetric inequalities and their applications, SIAM Review 9 (1967), 453–488.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. E. Payne, On two conjectures in the fixed membrane eigenvalue problem, Z. Angew. Math. Phys. 24 (1973), 721–729.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Pütter, On the nodal lines of second eigenfunctions of the fixed membrane problem, Comment. Math. Helv. 65 (1990), 96–103.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Pütter, On the nodal lines of second eigenfunctions of the free membrane problem, Appl. Anal. 42 (1991), 199–207.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Kennedy.

Additional information

The work of the author was supported by the Fundação para a Ciência e a Tecnologia, Portugal, via the program “Investigador FCT”, reference IF/01461/2015, and project PTDC/MAT-CAL/4334/2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, J.B. A toy Neumann analogue of the nodal line conjecture. Arch. Math. 110, 261–271 (2018). https://doi.org/10.1007/s00013-017-1117-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-017-1117-1

Mathematics Subject Classification

Keywords

Navigation