## Abstract

Let *X* be a compact real algebraic set of dimension *n*. We prove that every Euclidean continuous map from *X* into the unit *n*-sphere can be approximated by a regulous map. This strengthens and generalizes previously known results.

## Article PDF

### Similar content being viewed by others

Avoid common mistakes on your manuscript.

## References

S. Akbulut and H. King, Topology of Real Algebraic Sets, Mathematical Sciences Research Institute Publications, 25, Springer, New York, 1992.

R. Benedetti and A. Tognoli, Remarks and counterexamples in the theory of real algebraic vector bundles and cycles, In: Real Algebraic Geometry and Quadratic Forms (Rennes, 1981), 198–211, Lecture Notes in Math., 959, Springer, Berlin, 1982.

M. Bilski, W. Kucharz, A. Valette, and G. Valette, Vector bundles and regulous maps, Math. Z.

**275**(2013), 403–418.J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 36, Springer, Berlin, 1998.

J. Bochnak and W. Kucharz, Realization of homotopy classes by algebraic mappings, J. Reine Angew. Math.

**377**(1987), 159–169.A. Borel and A. Haefliger, La classe d’homologie fondamentale d’ub espace analytique, Bull. Soc. Math. France

**89**(1961), 461–513.G. Fichou, J. Huisman, F. Mangolte, and J.-Ph. Monnier, Fonctions régulues, J. Reine Angew. Math.

**718**(2016), 103–151.G. Fichou, J.-P. Monnier, and R. Quarez, Continuous functions in the plane regular after one blowing up, Math. Z.

**285**(2017), 287–323.H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math.

**79**(1964), 109–326.J. Kollár, Lectures on Resolution of Singularities, Annals of Mathematics Studies, 166, Princeton University Press, Princeton, NJ, 2007.

J. Kollár and K. Nowak, Continuous rational functions on real and p-adic varieties, Math. Z.

**279**(2015), 85–97.J. Kollár, W. Kucharz, and K. Kurdyka, Curve-rational functions, to appear in Math. Ann.

W. Kucharz, Rational maps in real algebraic geometry, Adv. Geom.

**9**(2009), 517–539.W. Kucharz, Regular versus continuous rational maps, Topology Appl.

**160**(2013), 1086–1090.W. Kucharz, Approximation by continuous rational maps into spheres, J. Eur. Math. Soc.

**16**(2014), 1555–1569.W. Kucharz, Continuous rational maps into the unit 2-sphere, Arch. Math.

**102**(2014), 257–261.W. Kucharz, Some conjectures on stratified-algebraic vector bundles, J. Singul.

**12**(2015), 92–104.W. Kucharz, Continuous rational maps into spheres, Math. Z.

**283**(2016), 1201–1215.W. Kucharz, Stratified-algebraic vector bundles of small rank, Arch. Math.

**107**(2016), 239–249.W. Kucharz and K. Kurdyka, Some conjectures on continuous rational maps into spheres, Topology Appl.

**208**(2016), 17–29.W. Kucharz and K. Kurdyka, Stratified-algebraic vector bundles, to appear in J. Reine Angew. Math.

W. Kucharz and K. Kurdyka, Comparison of stratified-algebraic and topological K-theory, arXiv:1511.04238 [math.AG].

W. Kucharz and K. Kurdyka, Linear equations on real algebraic surfaces, arXiv:1602.01986 [math.AG].

W. Kucharz and M. Zieliński, Regulous vector bundles, arXiv:1703.05566 [math.AG].

J.-P. Monnier, Semi-algebraic geometry with rational continuous functions, arXiv:1603.04193 [math.AG].

K.J. Nowak, Some results of algebraic geometry over Henselian rank one valued fields, Sel. Math. New Ser.

**28**(2017), 455–495.M. Zieliński, Homotopy properties of some real algebraic maps, Homology Homotopy Appl.

**18**(2016), 287–294.

## Acknowledgements

The author was partially supported by the National Science Centre (Poland) under Grant Number 2014/15/B/ST1/00046.

## Author information

### Authors and Affiliations

### Corresponding author

## Rights and permissions

**Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

## About this article

### Cite this article

Zieliński, M. Approximation of maps into spheres by regulous maps.
*Arch. Math.* **110**, 29–34 (2018). https://doi.org/10.1007/s00013-017-1092-6

Received:

Published:

Issue Date:

DOI: https://doi.org/10.1007/s00013-017-1092-6