Skip to main content
Log in

Asymptotic sequential Rademacher complexity of a finite function class

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

For a finite function class, we describe the large sample limit of the sequential Rademacher complexity in terms of the viscosity solution of a G-heat equation. In the language of Peng’s sublinear expectation theory, the same quantity equals to the expected value of the largest order statistics of a multidimensional G-normal random variable. We illustrate this result by deriving upper and lower bounds for the asymptotic sequential Rademacher complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: a nonasymptotic theory of independence, Oxford University Press, Oxford, 2013.

  2. N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games, Cambridge University Press, Cambridge, 2006.

    Book  MATH  Google Scholar 

  3. M.G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Da Lio and O. Ley, Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth conditions and applications, SIAM J. Control Optim. 45 (2006), 74–106.

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Giga, Surface Evolution Equations. A Level Set Approach, Birkhäuser, Basel, 2006.

  6. M.B. Marcus and J. Rosen, Markov processes, Gaussian processes, and local times, Cambridge University Press, Cambridge, 2006.

    Book  MATH  Google Scholar 

  7. S. Peng, A new central limit theorem under sublinear expectations, Preprint. arXiv:0803.2656 [math.PR], 2008.

  8. S. Peng, Multi-dimensional \(G\)-Brownian motion and related stochastic calculus under \(G\)-expectation, Stoch. Proc. Appl. 118 (2008), 2223–2253.

  9. S. Peng, Nonlinear expectations and stochastic calculus under uncertainty, Preprint. arXiv:1002.4546 [math.PR], 2010.

  10. A. Rakhlin, K. Sridharan, and A. Tewari, Online learning: random averages, combinatorial parameters, and learnability, Adv. Neural Inf. Process. Syst. 23 (2010), 1984–1992.

    Google Scholar 

  11. A. Rakhlin, K. Sridharan, and A. Tewari, Online learning via sequential complexities, J. Mach. Learn. Res. 16 (2015), 155–186.

    MathSciNet  MATH  Google Scholar 

  12. A. Rakhlin, K. Sridharan, and A. Tewari, Sequential complexities and uniform martingale laws of large numbers, Probab. Theory Relat. Fields 161 (2015), 111–153.

    Article  MathSciNet  MATH  Google Scholar 

  13. D.B. Rokhlin, Central limit theorem under uncertain linear transformations, Stat. Probabil. Lett. 107 (2015), 191–198.

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Sammut and G.I. Webb (eds.), Encyclopedia of Machine Learning, Springer, New York, 2011.

  15. M. Steele, Probability Theory and Combinatorial Optimization, SIAM, Philadelphia, 1997.

  16. T. Strömberg, Exponentially growing solutions of parabolic Isaacs’ equations, J. Math. Anal. Appl. 348 (2008), 337–345.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Talagrand, The Generic Chaining. Upper and Lower Bounds for Stochastic Processes, Springer, Berlin, 2005.

  18. V.V. V’yugin, VS Dimension, Fat-Shattering Dimension, Rademacher Averages, and Their Applications, In: V. Vovk, H. Papadopoulos, and A. Gammerman (eds.), Measures of Complexity: Festschrift in Honor of A. Chervonenkis, Chapter 6, 57–74, Springer, Cham, 2015.

  19. J. Yong and X.Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer, New York, 1999.

Download references

Acknowledgements

The research is supported by Southern Federal University, project 213.01-07-2014/07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry B. Rokhlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rokhlin, D.B. Asymptotic sequential Rademacher complexity of a finite function class. Arch. Math. 108, 325–335 (2017). https://doi.org/10.1007/s00013-016-1002-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-016-1002-3

Keywords

Mathematics Subject Classification

Navigation