Goldbach’s conjecture in arithmetic progressions: number and size of exceptional prime moduli

Abstract

Set \({T=N^{\frac{1}{3}-\epsilon}}\). It is proved that for all but \({\ll TL^{-H},\,H > 0}\), exceptional prime numbers \({k\leq T}\) and almost all integers b 1, b 2 co-prime to k, almost all integers \({n\sim N}\) satisfying \({n\equiv b_{1}+b_{2}(mod\,k)}\) can be written as the sum of two primes p 1 and p 2 satisfying \({p_{i}\equiv b_{i}(mod\,k),\,i=1,2}\). For prime numbers \({k\leq N^{\frac{5}{24}-\epsilon}}\), this result is even true for all but \({\ll (\log\,N)^{D}}\) primes k and all integers b 1, b 2 co-prime to k.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bauer C.: The binary Goldbach bonjecture with restrictions on the primes. Far East J. Math. Sci. (FJMS) 70, 87–120 (2012)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Bauer C., Wang Y.: The binary Goldbach conjecture with primes in arithmetic progressions with large modulus. Acta Arith. 159, 227–243 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    C. Bauer, The large sieve inequality with sparse sets of moduli applied to the Goldbach conjecture, Front. Math. China (2016).

  4. 4.

    Gallagher P. X.: A large sieve density estimate near \({\sigma=1}\). Invent. Math. 11, 329–339 (1970)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    K. Halupczok, On the ternary Goldbach problem with primes in arithmetic progressions of a common module, 25th Journées, Arithmétiques, Edinburgh, 2007.

  6. 6.

    Huxley N. M.: Large values of Dirichlet polynomials III. Acta Arith. 26, 435–444 (1975)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    A. F. Lavrik, The number of k-twin primes lying on an interval of a given length, Dokl. Akad. Nauk SSSR 136 (1961), 281–283. MR, 24, # A1902; Soviet Math. Dokl. 2 (1961), 52–55.

  8. 8.

    M. C. Liu and T. Zhan, The Goldbach problem with primes in arithmetic progressions, London Math. Soc. Lecture Notes 247, Analytic Number Theory, edited by Yoichi Motohashi, Cambridge University Press, Cambridge, 1997, 227–251.

  9. 9.

    M. B. Nathanson, Additive number theory: The classical bases, Graduate Texts in mathematics 164, Springer Verlag, New York, 1996.

  10. 10.

    K. Prachar, Primzahlverteilung, Springer Verlag, Berlin, Heidelberg, New York, 1978.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Claus Bauer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bauer, C. Goldbach’s conjecture in arithmetic progressions: number and size of exceptional prime moduli. Arch. Math. 108, 159–172 (2017). https://doi.org/10.1007/s00013-016-0993-0

Download citation

Mathematics Subject Classification

  • 11F32
  • 11F25

Keywords

  • Exponential sums
  • Prime numbers
  • Dirichlet series