Skip to main content
Log in

Continuity of the first eigenvalue for a family of degenerate eigenvalue problems

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

For each \({\alpha\in[0,2)}\) we consider the eigenvalue problem \({-{\rm div}(|x|^\alpha \nabla u)=\lambda u}\) in a bounded domain \({\Omega\subset \mathbb{R}^N}\) (\({N\geq 2}\)) with smooth boundary and \({0\in \Omega}\) subject to the homogeneous Dirichlet boundary condition. Denote by \({\lambda_1(\alpha)}\) the first eigenvalue of this problem. Using \({\Gamma}\)-convergence arguments we prove the continuity of the function \({\lambda_1}\) with respect to \({\alpha}\) on the interval \({[0,2)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Brezis, Analyse fonctionnelle: théorie, méthodes et applications, Masson, Paris, 1992.

  2. Caldiroli P., Musina R.: On the existence of extremal functions for a weighted Sobolev embedding with critical exponent.. Calc. Var. 8, 365–387 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caldiroli P., Musina R.: On a variational degenerate elliptic problem. Nonlinear Differ. Equ. Appl. (NoDEA) 7, 187–199 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology, Vol. 1: physical origins and classical methods, Springer, Berlin, 1985.

  5. G. Dal Maso, An introduction to \({\Gamma}\)-convergence. Progress in nonlinear differential equations and their applications, vol. 8, Birkhäuser, Boston, MA, 1993.

  6. Gilbarg D., Trudinger N. S.: Elliptic partial differential equations of second order. Springer, Berlin (1998)

    MATH  Google Scholar 

  7. De Giorgi E.: Sulla convergenza di alcune succesioni di integrali del tipo dell’area. Rend. Mat. 8, 277–294 (1975)

    MathSciNet  MATH  Google Scholar 

  8. De Giorgi E., Franzoni T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58, 842–850 (1975)

    MathSciNet  MATH  Google Scholar 

  9. J. Jost and X. Li-Jost, Calculus of variations, Cambridge Studies in Advanced Mathematics, vol. 64, Cambridge University Press, Cambridge, 1998.

  10. Lindqvist P.: On non-linear Rayleigh quotients. Potential Anal. 2, 199–218 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Willem M.: Functional Analysis. Fundamentals and Applications. Birkhäuser, New York (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Mihăilescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fărcăşeanu, M., Mihăilescu, M. Continuity of the first eigenvalue for a family of degenerate eigenvalue problems. Arch. Math. 107, 659–667 (2016). https://doi.org/10.1007/s00013-016-0976-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-016-0976-1

Mathematics Subject Classification

Keywords

Navigation