Abstract
For each \({\alpha\in[0,2)}\) we consider the eigenvalue problem \({-{\rm div}(|x|^\alpha \nabla u)=\lambda u}\) in a bounded domain \({\Omega\subset \mathbb{R}^N}\) (\({N\geq 2}\)) with smooth boundary and \({0\in \Omega}\) subject to the homogeneous Dirichlet boundary condition. Denote by \({\lambda_1(\alpha)}\) the first eigenvalue of this problem. Using \({\Gamma}\)-convergence arguments we prove the continuity of the function \({\lambda_1}\) with respect to \({\alpha}\) on the interval \({[0,2)}\).
Similar content being viewed by others
References
H. Brezis, Analyse fonctionnelle: théorie, méthodes et applications, Masson, Paris, 1992.
Caldiroli P., Musina R.: On the existence of extremal functions for a weighted Sobolev embedding with critical exponent.. Calc. Var. 8, 365–387 (1999)
Caldiroli P., Musina R.: On a variational degenerate elliptic problem. Nonlinear Differ. Equ. Appl. (NoDEA) 7, 187–199 (2000)
R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology, Vol. 1: physical origins and classical methods, Springer, Berlin, 1985.
G. Dal Maso, An introduction to \({\Gamma}\)-convergence. Progress in nonlinear differential equations and their applications, vol. 8, Birkhäuser, Boston, MA, 1993.
Gilbarg D., Trudinger N. S.: Elliptic partial differential equations of second order. Springer, Berlin (1998)
De Giorgi E.: Sulla convergenza di alcune succesioni di integrali del tipo dell’area. Rend. Mat. 8, 277–294 (1975)
De Giorgi E., Franzoni T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58, 842–850 (1975)
J. Jost and X. Li-Jost, Calculus of variations, Cambridge Studies in Advanced Mathematics, vol. 64, Cambridge University Press, Cambridge, 1998.
Lindqvist P.: On non-linear Rayleigh quotients. Potential Anal. 2, 199–218 (1993)
Willem M.: Functional Analysis. Fundamentals and Applications. Birkhäuser, New York (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fărcăşeanu, M., Mihăilescu, M. Continuity of the first eigenvalue for a family of degenerate eigenvalue problems. Arch. Math. 107, 659–667 (2016). https://doi.org/10.1007/s00013-016-0976-1
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00013-016-0976-1