Skip to main content
Log in

Automorphism groups of Gabidulin-like codes

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let K/k be a cyclic Galois extension of degree \({\ell}\) and \({\theta }\) a generator of Gal(K/k). For any \({v=(v_1, \ldots, v_m)\in K^{m}}\) such that v is linearly independent over k, and any \({1\leq d < m }\) the Gabidulin-like code \({\mathcal{C}(v,\theta, d) \leq k^{\ell \times m }}\) is a maximum rank distance code of dimension \({\ell d}\) over k. This construction unifies the ones available in the literature. We characterise the K-linear codes that are Gabidulin-like codes and determine their rank-metric automorphism group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Augot, P. Loidreau, and G. Robert, Rank metric and Gabidulin codes in characteristic zero, ISIT 2013 IEEE International Symposium on Information Theory, Jul 2013, Istanbul, Turkey, 2013

  2. T. Berger, Isometries for rank distance and permutation group of Gabidulin codes, In Proceedings of ACCT’8, St Petersbourg, Sept 2002, 30–33.

  3. Delsarte Ph.: Bilinear forms over a finite field with applications to coding theory, J. Comb. Theory A 25, 226–241 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dumas J-G., Gow R., McGuire G., Sheekey J.: Subspaces of matrices with special rank properties. Linear Algebra Appl. 433, 191–202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gabidulin E.: Theory of codes with maximum rank distance. Problems Inf. Transmission 21, 1–12 (1985)

    MathSciNet  MATH  Google Scholar 

  6. R. M. Guralnick, Invertible preservers and algebraic groups, Proceedings of the 3rd ILAS Conference (Pensacola, FL, 1993), Linear Algebra Appl. 212/213 (1994), 249–257.

  7. A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, In Proceedings of the International Symposium of Information Theory (ISIT), 2005, 2105–2108.

  8. Kötter R., Kschischang F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inform. Theory 54, 3579–3591 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Morrison K.: Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes. IEEE Trans. Inform. Theory 60, 7035–7046 (2014)

    Article  MathSciNet  Google Scholar 

  10. G. Nebe and W. Willems, On self-dual MRD codes. (to appear in Advances in Mathematics of Communication 2016)

  11. A. Ravagnani, Rank-metric codes and their duality theory. Designs, Codes, and Cryptography, April 2015, doi:10.1007/s10623-015-0077-3.

  12. I. Reiner, Maximal orders, LMS Monographs 28, The Clarendon Press, Oxford University Press, Oxford, 2003.

  13. Roney-Dougal C.M.: Conjugacy of subgroups of the general linear group, Experiment. Math. 13, 151–163 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Sheekey, A new family of linear maximum rank distance codes. arXiv:1504.01581.

  15. A.-L. Horlemann-Trautmann and K. Marshall, New Criteria for MRD and Gabidulin Codes and some Rank-Metric Code Constructions. arXiv:1507.08641.

  16. Z.-X. Wan, Geometry of matrices, In memory of Professor L. K. Hua (1910–1985), World Scientific, Singapore, 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Nebe.

Additional information

Dedicated to Ernst-Ulrich Gekeler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liebhold, D., Nebe, G. Automorphism groups of Gabidulin-like codes. Arch. Math. 107, 355–366 (2016). https://doi.org/10.1007/s00013-016-0949-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-016-0949-4

Mathematics Subject Classification

Keywords

Navigation