Archiv der Mathematik

, Volume 106, Issue 5, pp 401–407 | Cite as

Finite groups with a splitting automorphism of odd order

Article
  • 154 Downloads

Abstract

In this paper, we prove that a finite group with a splitting automorphism of odd order is solvable. By using this result, we prove that a locally finite group with a splitting automorphism of odd order is locally solvable.

Keywords

Splitting automorphism Finite simple group Locally finite group Centralizer 

Mathematics Subject Classification

20D45 20D05 20E36 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.W. Carter, Finite Groups of Lie Type-Conjugacy Classes and Complex Characters, John Wiley & Sons, 1993.Google Scholar
  2. 2.
    Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A.: Atlas of finite groups. Oxford University Press, Oxford (1985)Google Scholar
  3. 3.
    B. Hartley, A general Brauer-Fowler Theorem and centralizers in locally finite groups, Pacific J. Math 152 (1992), 101–117.Google Scholar
  4. 4.
    Ersoy K.: Infinite groups with an anticentral element, Comm. Algebra 40, 4627–4638 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Yu. M. Gorchakov: Infinite Frobenius groups. Algebra Logika 4, 1529 (1965)MathSciNetGoogle Scholar
  6. 6.
    Jabara E.: Gruppi che ammettono un automorfismo 4-spezzante. Rend. Circ. Mat. Palermo (2) 45, 8492 (1996)MathSciNetCrossRefGoogle Scholar
  7. 7.
    D. Gorenstein, R. Lyons, R. Solomon, Classification of Finite Simple Groups, Number 3, Mathematical Surveys and Monographs, Volume 40, Number 3, American Mathematical Society.Google Scholar
  8. 8.
    O.H. Kegel: Die Nilpotenz der H p-Gruppen, Math. Z. 75, 373–376 (1961)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ladisch F.: Groups with Anticentral Elements. Comm. Algebra 36, 2883–2894 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    D.J.S. Robinson, A course in the theory of groups, 2nd Edition, Springer-Verlag, Graduate Texts in Mathematics, 80, 1995.Google Scholar
  11. 11.
    Rowley P.: Finite groups admitting a fixed-point-free automorphism group. J. Algebra 174, 724–727 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    R. Steinberg, Lectures in Chevalley Groups, Yale University Lecture Notes, 1968.Google Scholar
  13. 13.
    Thompson J.G.: Finite groups with a fixed-point-free automorphism of prime order. Proc. Nat. Acad. Sci. U.S.A 45, 578–581 (1959)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of MathematicsMimar Sinan Fine Arts UniversityIstanbulTurkey

Personalised recommendations