Skip to main content
Log in

A field theoretic proof of Hermite’s theorem for function fields

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let \({\mathbb{F}}\) be a finite field. The function field analog of Hermite’s theorem says that there are at most finitely many finite separable extensions of \({\mathbb{F}(T)}\) inside a fixed separable closure of \({\mathbb{F}(T)}\) whose discriminant divisors have bounded degree. In this paper we give a field theoretic proof of this result, inspired by a lemma of Faltings for comparing semisimple \({\ell }\)-adic Galois representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Accola, Topics in the theory of Riemann surfaces. Lec. notes in math. 1595. Springer-Verlag, 1994.

  2. H. Cohen, A course in computational number theory, Springer-Verlag, 1993.

  3. Z. Chonoles, Hermite’s Theorem for Function Fields, Honors thesis, Brown University, May 2012.

  4. R. Dedekind, Vorlesungen über Zahlentheorie von P.G. Lejeune Dirichlet (2 ed.) Vieweg, 1871.

  5. Faltings G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73, 349–366 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Goss, Basic Structures of Function Field Arithmetic, Springer-Verlag, 1997.

  7. Hermite C.: Extrait d’une lettre de M. C. Hermite à M. Borchardt sur le nombre limité d’irrationalités auxquelles se réduisent les racines des équations à coefficients entiers complexes d’un degré et d’un discriminant donnés. Crelle 53, 182–192 (1857)

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Hindry and J. H. Silverman, Diophantine geometry, Springer-Verlag, 2000.

  9. S. Lang, Algebraic number theory, Addison-Wesley, 1970.

  10. S. Lang, Number Theory III, Springer-Verlag, 1991.

  11. Murty V. K., Scherk J.: Effective versions of the Chebotarev density theorem for function fields. C. R. Acad. Sci. Paris 319, 523–528 (1994)

    MathSciNet  MATH  Google Scholar 

  12. J. Neukirch, Algebraic number theory, Springer-Verlag, 1999.

  13. M. Rosen, Number theory in function fields, Springer-Verlag, 2002.

  14. G. D. V. Salvador, Topics in the theory of algebraic function fields, Birkhäuser, 2006.

  15. J. P. Serre, Local fields, Springer-Verlag, 1979.

  16. J. P. Serre, Résumé des cours de 1984–1985. Oeuvres, v. 4, 27–29.

  17. H. Stichtenoth, Algebraic function fields and codes, 2nd ed. Springer-Verlag, 2009.

  18. Widmer M.: Small generators of function fields. J. Théorie des Nombres de Bordeaux 22, 747–753 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wikipedia, Discriminant of an algebraic number field. https://en.wikipedia.org/wiki/Discriminant_of_an_algebraic_number_field.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siman Wong.

Additional information

Siman Wong’s work is supported in part by NSF Grant DMS-0901506.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, S. A field theoretic proof of Hermite’s theorem for function fields. Arch. Math. 105, 351–360 (2015). https://doi.org/10.1007/s00013-015-0818-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-015-0818-6

Mathematics Subject Classification

Keywords

Navigation