Skip to main content
Log in

Invariable generation of permutation groups

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let G be a finite permutation group of degree n, and let d = 2 if G = Sym(3), d = [n/2] otherwise. We prove that there exist d elements g 1, . . . , g d in G with the property that \({G=\langle g_1^{x_1},\ldots,g_d^{x_d}\rangle}\) for every choice of \({(x_1,\ldots,x_d)\in G^d}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cameron P., Solomon R., Turull A.: Chains of subgroups in symmetric groups. J. Algebra 127, 340–352 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Detomi E., Lucchini A: Invariable generation with elements of coprime prime-power order, J. Algebra 423, 683–701 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Detomi and A. Lucchini, Invariable generation of prosoluble groups, to appear on Israel J. Math., arXiv:1410.5271

  4. J. D. Dixon, Random sets which invariably generate the symmetric group, Discrete Math. 105 (1992), 25–39.

  5. J. Fulman and R. Guralnick, Derangements in simple and primitive groups, in: A.A. Ivanov, M.W. Liebeck, J. Saxl (Eds.), Groups, Combinatorics and Geometry, Durham 2001, World Sci. Publ., River Edge, NJ, 2003, pp. 99–121.

  6. R. Guralnick and G. Malle, Simple groups admit Beauville structures, J. Lond. Math. Soc. (2) 85 (2012), 694–721.

  7. W. M. Kantor, A. Lubotzky, and A. Shalev, Invariable generation and the Chebotarev invariant of a finite group, J. Algebra 348 (2011), 302–314.

  8. W.M. Kantor, A. Lubotzky, and A. Shalev, Invariable generation of infinite groups, J. Algebra 421 (2015), 296310.

  9. L. G. Kovács, Primitive subgroups of wreath products in product action, Proc. London Math. Soc. (3) 58 (1989), 306–322.

  10. T. Luczak and L. Pyber, On random generation of the symmetric group, Combin. Probab. Comput. 2 (1993), 505–512.

  11. A. McIver and P. Neumann, Enumerating finite groups. Quart. J. Math. Oxford Ser. (2) 38 (1987), 473–488.

  12. N. Menezes, Random generation and chief length of finite groups, PhD Thesis, http://research-repository.st-andrews.ac.uk/handle/10023/3578

  13. L. Pyber, Asymptotic results for permutation groups. Groups and computation (New Brunswick, NJ, 1991), 197219, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 11, Amer. Math. Soc., Providence, RI, 1993.

  14. A. Shalev, A theorem on random matrices and some applications, J. Algebra 199 (1998), 124–141.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lucchini.

Additional information

The research was partially supported by GNSAGA (INdAM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Detomi, E., Lucchini, A. Invariable generation of permutation groups. Arch. Math. 104, 301–309 (2015). https://doi.org/10.1007/s00013-015-0749-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-015-0749-2

Mathematics Subject Classification

Keywords

Navigation