Skip to main content
Log in

Selectivity in division algebras

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

A commutative order in a central simple algebra over a number field is said to be selective if it embeds in some, but not all, maximal orders in the algebra. We completely characterize selective orders in central division algebras, of dimension 9 or greater, in terms of the characterization of selective orders given by Chinburg and Friedman in the quaternionic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert A.A., Hasse H.: A determination of all normal division algebras over an algebraic number field. Trans. Amer. Math. Soc. 34, 722–726 (1932)

    Article  MathSciNet  Google Scholar 

  2. Arenas-Carmona L.: Applications of spinor class fields: embeddings of orders and quaternionic lattices. Ann. Inst. Fourier 53, 2021–2038 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arenas-Carmona L.: Representation fields for commutative orders. Ann. Inst. Fourier 62, 807–819 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arenas-Carmona L.: Maximal selectivity for orders in fields. J. Number Theory 132, 2748–2755 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Arenas-Carmona, Roots of unity in definite quaternion orders, Cornell U. Lib. http://arxiv.org/pdf/1404.3244v1 (2014) Accessed 25 April 2014.

  6. W.K. Chan and F. Xu, On representations of spinor genera, Compositio Math. 140.2 (2004), 287–300.

  7. C. Chevalley, L’arithmétique sur les algèbres de matrices, Hermann, Paris, 1936.

  8. T. Chinburg and E. Friedman, An embedding theorem for quaternion algebras, J. London Math. Soc. 60.2 (1999), 33–44.

  9. Guo X., Qin H.: An embedding theorem for Eichler orders. J. Number Theory 107, 207–214 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Linowitz, Selectivity in central simple algebras and isospectrality, Ph.D. Thesis, DarthMouth College, Hanover NH, 2012.

  11. Linowitz B., Shemanske T.: Embedding orders into central simple algebras. Journal de Théorie des Nombres de Bordeaux 24, 405–424 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Linowitz and T. Shemanske, Selective orders in central simple algebras, Cornell U. Lib. http://arxiv.org/pdf/1204.2526v1 (2012) Accessed 25 April 2014.

  13. J.S. Milne, Class field theory, Course notes, Version 4.02, Personal page, http://www.jmilne.org/math/CourseNotes/CFT (2013) Accessed 25 April 2014.

  14. Rajan C. S.: On isospectral arithmetical spaces. Amer. J. of Math. 129, 791–806 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Reiner I.: Maximal Orders. Academic Press, London (1975)

    MATH  Google Scholar 

  16. M.-F. Vignéras, Arithmétique des algèbres de quaternions, Springer-Verlag, Berlin, 1980.

  17. Vignéras M.-F.: Variétés Riemanniennes isospectrales et non isométriques. Ann. of Math. 112, 21–32 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Arenas-Carmona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arenas-Carmona, L. Selectivity in division algebras. Arch. Math. 103, 139–146 (2014). https://doi.org/10.1007/s00013-014-0660-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-014-0660-2

Mathematics Subject Classification

Keywords

Navigation