Abstract
In this paper we introduce a class of functions contained in the disc algebra \({\mathcal{A}(D)}\) . We study functions \({f \in \mathcal{A}(D)}\) which have the property that the continuous periodic function \({u = {\rm Re}f|_{\mathbb{T}}}\) , where \({\mathbb{T}}\) is the unit circle, is nowhere differentiable. We prove that this class is non-empty and instead, generically, every function \({f \in \mathcal{A}(D)}\) has the above property. Afterwards, we strengthen this result by proving that, generically, for every function \({f \in \mathcal{A}(D)}\) , both continuous periodic functions \({u = {\rm Re}f|_\mathbb{T}}\) and \({\tilde{u} = {\rm Im}f|_\mathbb{T}}\) are nowhere differentiable. We avoid any use of the Weierstrass function and we mainly use Baire’s Category Theorem.
This is a preview of subscription content, access via your institution.
References
L. Ahlfors, Complex Analysis 3rd edition, McGraw-Hill International Editions, 1979.
R. Aron, V.I. Gurariy, and J. Seoane, Lineability and spaceability of sets of functions on \({\mathbb{R}}\) , Proceedings of the American Mathematical Society, 133 (2005), 795–803.
Banach S.: Über die Baire’sche Kategorie gewisser Funktionenmengen. Studia Mathematica 3, 174–179 (1931)
F. Bayart and L. Quarta, Algebras in sets of queer functions, Israel Journal of Mathematics, 158 (2007), 285–296.
Bernal-González L.: Dense-lineability in spaces of continuous functions. Proceedings of the American Mathematical Society 136, 3163–3169 (2008)
Grosse-Erdmann K.-G.: Universal families and hypercyclic operators. Bulletin of the American Mathematical Society (N.S.) 36, 345–381 (1999)
Kahane J.-P.: Baire’s Category theorem and trigonometric series. Journal d’ Analyse Mathématique 80, 143–182 (2000)
Mazurkiewicz S.: Sur les fonctions non dérivables. Studia Mathematica 3, 92–94 (1931)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Eskenazis, A. Topological genericity of nowhere differentiable functions in the disc algebra. Arch. Math. 103, 85–92 (2014). https://doi.org/10.1007/s00013-014-0651-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00013-014-0651-3