Skip to main content

Finite simple 3′-groups are cyclic or Suzuki groups

Abstract

In this note we prove that all finite simple 3′-groups are cyclic of prime order or Suzuki groups. This is well known in the sense that it is mentioned frequently in the literature, often referring to unpublished work of Thompson. Recently an explicit proof was given by Aschbacher [3], as a corollary of the classification of \({\mathcal{S}_3}\) -free fusion systems. We argue differently, following Glauberman’s comment in the preface to the second printing of his booklet [8]. We use a result by Stellmacher (see [12]), and instead of quoting Goldschmidt’s result in its full strength, we give explicit arguments along his ideas in [10] for our special case of 3′-groups.

This is a preview of subscription content, access via your institution.

References

  1. Alperin J.L., Gorenstein D.: The multiplicators of certain simple groups. Proc. Am. Math. Soc. 17, 515–519 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aschbacher M.: A condition for the existence of a strongly embedded subgroup. Proc. Am. Math. Soc. 38, 509–511 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Aschbacher, \({\mathcal{S}_3}\) -free 2-fusion systems, Proc. Edinb. Math. Soc., series 2 56 (2013), 27–48.

  4. Bender H.: Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt. J. Algebra 17, 527–554 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  5. Feit W., Thompson J.G.: Solvability of groups of odd order. Pacific J. Math. 13, 775–1029 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Glauberman, Global and local properties of finite groups, Finite simple groups 1–64. Academic Press, London, 1971.

  7. Glauberman G.: A sufficient condition for p-stability. Proc. London Math. Soc. 25, 253–287 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Glauberman, Factorizations in Local Subgroups of Finite Groups, Regional Conference Series in Mathematics, no. 33. American Mathematical Society, Providence, RI, 1977.

  9. Goldschmidt D.M.: Strongly closed 2-subgroups of finite groups. Ann. Math. 102, 475–489 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goldschmidt D.M.: 2-fusion in finite groups. Ann. Math. 99, 70–117 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Gorenstein, R. Lyons, and R. Solomon, The classification of the finite simple groups. Number 2, Mathematical Surveys and Monographs, 40.2. American Mathematical Society, Providence, RI, 1996.

  12. Stellmacher B.: A characteristic subgroup of Σ4-free groups. Israel J. Math. 94, 367–379 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Suzuki M.: On a class of doubly transitive groups. Ann. Math. 75, 105–145 (1962)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Waldecker.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toborg, I., Waldecker, R. Finite simple 3′-groups are cyclic or Suzuki groups. Arch. Math. 102, 301–312 (2014). https://doi.org/10.1007/s00013-014-0630-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-014-0630-8

Keywords

  • Normal Subgroup
  • Maximal Subgroup
  • Prime Order
  • Central Product
  • Characteristic Subgroup