Skip to main content
Log in

Liouville numbers and Schanuel’s Conjecture

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

In this paper, using an argument of P. Erdős, K. Alniaçik, and É. Saias, we extend earlier results on Liouville numbers, due to P. Erdős, G.J. Rieger, W. Schwarz, K. Alniaçik, É. Saias, E.B. Burger. We also produce new results of algebraic independence related with Liouville numbers and Schanuel’s Conjecture, in the framework of \({G_\delta}\) -subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alniaçik K.: Representation of real numbers as sum of U 2 numbers. Acta Arith. 55, 301–310 (1990)

    MATH  MathSciNet  Google Scholar 

  2. K. Alniaçik and É. Saias, Une remarque sur les \({G_\delta}\) –denses, Arch. Math. (Basel) 62 (1994), 425–426.

  3. Y. Bugeaud, Approximation by algebraic numbers. Cambridge Tracts in Mathematics, 160. Cambridge University Press, Cambridge, 2004.

  4. E. B. Burger, On Liouville decompositions in local fields, Proc. Amer. Math. Soc 124 (1996), 3305–3310.

    Google Scholar 

  5. Burger E.B.: Diophantine inequalities and irrationality measures for certain transcendental numbers. Indian J. Pure Appl. Math. 32, 1591–1599 (2001)

    MATH  MathSciNet  Google Scholar 

  6. P. Erdős, Representation of real numbers as sums and products of Liouville numbers, Michigan Math. J, 9 (1) (1962) 59–60.

  7. J. Liouville, Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationnelles algébriques, J. Math. Pures et Appl. 18 (1844) 883–885, and 910–911.

  8. É. Maillet, Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions, Paris, 1906.

  9. Maillet É.: Sur quelques propriétés des nombres transcendants de Liouville. Bull. S.M.F 50, 74–99 (1922)

    MATH  MathSciNet  Google Scholar 

  10. G. J. Rieger, Über die Lösbarkeit von Gleichungssystemen durch Liouville–Zahlen. (1975), 40–43.

  11. Schwarz W.: Liouville–Zahlen und der Satz von Baire. Math.-Phys. Semesterber. 24, 84–87 (1977)

    MATH  MathSciNet  Google Scholar 

  12. M. Waldschmidt, Algebraic independence of transcendental numbers. In: Gel’fond’s method and its developments. Perspectives in mathematics, 551–571, Birkhäuser, Basel-Boston, Mass., 1984.

  13. M. Waldschmidt, Indépendance algébrique de nombres de Liouville, Cinquante ans de polynômes, Lecture Notes in Math. (Springer Verlag), 1415 (1990), 225–235.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Senthil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, K.S., Thangadurai, R. & Waldschmidt, M. Liouville numbers and Schanuel’s Conjecture. Arch. Math. 102, 59–70 (2014). https://doi.org/10.1007/s00013-013-0606-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-013-0606-0

Keywords

Navigation