Skip to main content
Log in

Proper holomorphic mappings, Bell’s formula, and the Lu Qi-Keng problem on the tetrablock

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We consider proper holomorphic maps \({\pi : D\rightarrow G}\), where D and G are domains in \({\mathbb{C}^{n}}\). Let \({\alpha\in \mathcal{C}(G,\mathbb{R}_{ > 0})}\). We show that every π induces some subspace H of \({\mathbb{A}^{2}_{\alpha\circ\pi}(D)}\) such that \({\mathbb{A}^{2}_{\alpha}(G)}\) is isometrically isomorphic to H via some unitary operator Γ. Using this isomorphism we construct the orthogonal projection onto H, and we derive Bell’s transformation formula for the weighted Bergman kernel function under proper holomorphic mappings. As a consequence of the formula, we get that the tetrablock is not a Lu Qi-Keng domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Abouhajar, M. C. White, and N. J. Young, A Schwarz lemma for a domain related to μ-synthesis, J. Geom. Anal. 17 (2007), 717–750.

    Google Scholar 

  2. Bell S. R.: The Bergman kernel function and proper holomorphic mappings, Trans. Amer. Math. Soc. 270, 685–691 (1982)

    MATH  Google Scholar 

  3. H. P. Boas, Lu Qi-Keng’s problem, J. Korean Math. Soc. 37 (2000), 253–267.

    Google Scholar 

  4. H. P. Boas, S. Fu, and E. J. Straube, The Bergman kernel function: explicit formula and zeroes, Proc. Amer. Math. Soc. 127 (1999), 805–811.

  5. A. Edigarian, Ł. Kosiński, and W. Zwonek, Tetrablock and the Lempert Theorem, J. Geom. Anal. 23 (2013), 1818–1831.

    Google Scholar 

  6. L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, AMS, Providence, vol 6, 1963.

  7. M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, Berlin, 1993.

  8. M. Jarnicki and P. Pflug, Extension of Holomorphic Functions, Walter de Gruyter, Berlin, 2000.

  9. L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427–474.

    Google Scholar 

  10. L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257–261.

    Google Scholar 

  11. E. Ligocka, On the Forelli-Rudin construction and the weighted Bergman projections, Studia Math. 94 (1989), 257–272.

    Google Scholar 

  12. G. Misra, S. S. Roy, and G. Zhang, Reproducing kernel for a class of weighted Bergman spaces on the symmetrized polydisc, Proc. Amer. Math. Soc (to appear).

  13. W. Rudin, Proper holomorphic maps and finite reflection groups, Indiana Univ. Math. J. 31 (1982), 701–720.

  14. L. Zhang and W. Yin, Lu Qi-Keng’s problem on some complex ellipsoids, J. Math. Anal. Appl. 357 (2009), 364–370.

    Google Scholar 

  15. W. Zwonek, Geometric properties of the tetrablock, Arch. Math. 100 (2013), 159–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Trybuła.

Additional information

Project operated within the Foundation for Polish Science IPP Programme “Geometry and Topology in Physical Models” co-financed by the EU European Regional Development Fund, Operational Program Innovative Economy 2007–2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trybuła, M. Proper holomorphic mappings, Bell’s formula, and the Lu Qi-Keng problem on the tetrablock. Arch. Math. 101, 549–558 (2013). https://doi.org/10.1007/s00013-013-0591-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-013-0591-3

Mathematical Subject Classification (2010)

Keywords

Navigation