Skip to main content

Semisimplicity of reflexive amenable operator algebras


We prove that amenable and reflexive operator algebras are semisimple and are finite direct sums of simple Banach algebras of operators.

This is a preview of subscription content, access via your institution.


  1. 1.

    Blanco A., Kaijser S., Ransford T. J.: Real interpolation of Banach algebras and factorization of weakly compact homomorphisms. J. Func. Anal. 217, 126–141 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    D. P. Blecher and Ch. Le Merdy, Operator Algebras and Their Modules - An operator space approach, Oxford University Press (2004).

  3. 3.

    Curtis P.C., Loy R.J.: The structure of amenable Banach algebras, Proc. LMS 40, 89–104 (1989)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Effros E.G., Ruan Z.-J.: On nonselfadjoint operator algebras. Proc. Am. Math. Soc. 110, 915–922 (1990)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    B. E. Johnson, Cohomolgy in Banach algebras, Mem. Am. Math. Soc. Vol. 127, 1972.

  6. 6.

    Galé J.E., Ransford T.J., White M.C.: Weakly compact homomorphisms. Trans. Am. Math. Soc. 331, 815–824 (1992)

    MATH  Google Scholar 

  7. 7.

    El Harti R.: The structure of a subclass of amenable Banach algebras. Int J. Math. Math. Sci. 55, 2963–2969 (2004)

    MathSciNet  Article  Google Scholar 

  8. 8.

    El Harti R.: Reduction operator algebras and generalized similarity problem. Op. Matrices 4, 559–572 (2010)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Gifford J.: Operator algebras with a reduction property. J. Aust. Math. Soc. 80, 297–315 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    T.W. Palmer, Banach algebras and the general theory of *-algebras, Vol. 1, CUP, Cambridge, 1994.

  11. 11.

    Read C.J.: Commutative, radical amenable Banach algebras. Studia Math. 140, 199–212 (2000)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    V. Runde, The structure of contractible and amenable Banach algebras. In: Banach Algebras ’97, E. Albrecht and M. Mathieu, eds., de Gruyter Berlin 1998.

  13. 13.

    Runde V.: Banach space properties forcing a reflexive, amenable Banach algebra to be trivial. Arch. Math. 77, 265–272 (2001)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Paulo R. Pinto.

Additional information

The second author was partially supported by the Fundação para a Ciência e a Tecnologia through the Program POCI 2010/FEDER.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harti, R.E., Pinto, P.R. Semisimplicity of reflexive amenable operator algebras. Arch. Math. 101, 129–133 (2013).

Download citation

Mathematics Subject Classification (2010)

  • Primary 46B10
  • 47L10
  • Secondary 46H20


  • Banach algebra
  • Operator algebra
  • Amenable Banach algebra
  • Reflexive Banach algebra
  • Arens regular