Skip to main content
Log in

The Busemann theorem for complex p-convex bodies

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

The Busemann theorem states that the intersection body of an origin-symmetric convex body is also convex. In this paper, we prove a version of the Busemann theorem for complex p-convex bodies. Namely that the complex intersection body of an origin-symmetric complex p-convex body is γ-convex for certain γ. The result is the complex analogue of the work of Kim, Yaskin, and Zvavitch on (real) p-convex bodies. Furthermore, we show that the generalized radial qth mean body of a p-convex body is γ-convex for certain γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abardia J., Bernig A.: Projection bodies in complex vector spaces. Adv. Math. 227, 830–846 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball K.: Logarithmically concave functions and sections of convex sets in \({\mathbb{R}^n}\) . Studia Math. 88, 69–84 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Busemann H.: A theorem on convex bodies of the Brunn-Minkowski type. Proc. Nat. Acad. Sci. U.S.A. 35, 27–31 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gardner R.J.: The Brunn–Minkowski inequality. Bull. Amer. Math. Soc. 39, 355–405 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. R. J. Gardner, Geometric tomography, second edition, Encyclopedia Math. Appl., 58, Cambridge Univ. Press, Cambridge, 2006.

  6. Gardner R.J., Zhang G.: Affine inequalities and radial mean bodies. Amer. J. Math. 120, 505–528 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kim J., Yaskin V., Zvavitch A.: The geometry of p-convex intersection bodies. Adv. Math. 226, 5320–5337 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Koldobsky, Fourier Analysis in Convex Geometry, Math. Surveys Monogr., vol. 116, Amer. Math. Soc., Providence, RI, (2005).

  9. Koldobsky A.: Stability of volume comparison for complex convex bodies. Arch. Math. 97, 91–98 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Koldobsky A., König H.: Minimal volume of slabs in the complex cube. Proc. Amer. Math. Soc. 140, 1709–1717 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koldobsky A., Zymonopoulou M.: Extremal sections of complex l p -balls, 0 < p ≤  2. Studia Math. 159, 185–194 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koldobsky A., König H., Zymonopoulou M.: The complex Busemann–Petty problem on sections of convex bodies. Adv. Math. 218, 352–367 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Koldobsky, G. Paouris, and M. Zymonopoulou, Complex Intersection Bodies, arXiv:1201.0437v1.

  14. Lutwak E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232–261 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. V.D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, Geometric Aspects of Functional Analysis (J. Lindenstrauss and V.D. Milman, eds.) Springer Lecture Notes in Math. 1376 (1989), 64–104.

  16. Rubin B.: Comparison of volumes of convex bodies in real, complex, and quaternionic spaces. Adv. Math. 225, 1461–1498 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zymonopoulou M.: The complex Busemann-Petty problem for arbitrary measures. Arch. Math. (Basel) 91, 436–449 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zymonopoulou M.: The modified complex Busemann–Petty problem on sections of convex bodies. Positivity 13, 717–733 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhong Huang.

Additional information

The authors would like to acknowledge the support from the National Natural Science Foundation of China (11071156), Shanghai Leading Academic Discipline Project (J50101).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Q., He, B. & Wang, G. The Busemann theorem for complex p-convex bodies. Arch. Math. 99, 289–299 (2012). https://doi.org/10.1007/s00013-012-0422-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-012-0422-y

Mathematics Subject Classification (2010)

Keywords

Navigation