Archiv der Mathematik

, Volume 99, Issue 1, pp 43–47 | Cite as

Erratum to: The generalized strong recurrence for non-zero rational parameters

Erratum

Abstract

In the present paper, we prove that self-approximation of \({\log \zeta (s)}\) with d = 0 is equivalent to the Riemann Hypothesis. Next, we show self-approximation of \({\log \zeta (s)}\) with respect to all nonzero real numbers d. Moreover, we partially filled a gap existing in “The strong recurrence for non-zero rational parameters” and prove self-approximation of \({\zeta(s)}\) for 0 ≠ d = a/b with |ab| ≠ 1 and gcd(a,b) = 1.

Mathematics Subject Classification

Primary 11M06 Secondary 11M26 

Keywords

The Riemann zeta function Self-approximation 

References

  1. 1.
    Bagchi B.: A joint universality theorem for Dirichlet L-functions. Math. Z. 181, 319–334 (1982)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Garunkštis R.: Self-approximation of Dirichlet L-functions. J. Number Theory 131, 1286–1295 (2011)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Nakamura T.: The joint universality and the generalized strong recurrence for Dirichlet L-functions. Acta Arith. 138, 357–362 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Nakamura T.: The generalized strong recurrence for non-zero rational parameters. Archiv der Mathematik 95, 549–555 (2010)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Pańkowski Ł. Some remarks on the generalized strong recurrence for L-functions, New directions in value-distribution theory of zeta and L-functions, 305–315, Ber. Math., Shaker Verlag, Aachen, 2009.Google Scholar
  6. 6.
    J. Steuding, Value-Distribution of L-functions, Lecture Notes in Mathematics, 1877, Springer, Berlin (2007).Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Science and TechnologyTokyo University of Science NodaChibaJapan
  2. 2.Faculty of Mathematics and Computer ScienceAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations