Archiv der Mathematik

, Volume 98, Issue 4, pp 355–360 | Cite as

Ergodic characterization of van der Corput sets

  • Marina Ninčević
  • Braslav Rabar
  • Siniša SlijepčevićEmail author


We prove an analogue to the well-known equivalence of intersective sets and Poincaré recurrent sets, in a stronger setting. We show that a set D is van der Corput, if and only if for each Hilbert space H, unitary operator U, and \({x \in H}\) such that the projection of x to the kernel of (UI) is nonvanishing, there exists \({d \in D\,}\) such that (U d x, x)≠ 0. We also characterize the smallest such d.

Mathematics Subject Classification

37A45 11P99 37B20 


Van der Corput sets Recurrence Intersectivity Correlativity Furstenberg correspondence principle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergelson V., Lesigne E.: Van der Corput sets in Z d. Colloq. Math. 110, 1–49 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bourgain J.: Ruzsa’s problem on sets of recurrence. Israel J. Math. 59, 151–166 (1987)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Furstenberg H.: Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31, 204–256 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Kamae T., Mendès France M.: Van der Corput’s difference theorem. Israel J. Math. 31, 335–341 (1977)CrossRefGoogle Scholar
  5. 5.
    Mathis A. B.: Ensembles intersectifs et récurrence de Poincaré. Israel J. Math 55, 184–198 (1986)MathSciNetCrossRefGoogle Scholar
  6. 6.
    H. L. Montgomery, Ten lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, AMS (1994), CMBS Regional Conference Series in Mathematics, 84.Google Scholar
  7. 7.
    I. Z. Ruzsa, Uniform distribution, positive trigonometric polynomials and difference sets, in Semin. on Number Theory. Univ. Bordeaux I, 1981-82. 18.Google Scholar
  8. 8.
    I. Z. Ruzsa, Connections between the uniform distribution of a sequence and its differences, Topics in Classical Number Theory, Vol. I, II (Budapest, 1981), 1419-1443, Colloq. Math. Soc. Jànos Bolyai, 34, North-Holland, Amsterdam (1984).Google Scholar
  9. 9.
    Ruzsa I. Z.: On measures of intersectivity. Acta Math. Hungar. 43, 335–340 (1984)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Slijepčević S.: On van der Corput property of squares. Glas. mat. ser. III 45(65), 357–372 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    S. Slijepčević, On van der Corput property of shifted primes, Funct. Approx. Comment. Math., to appear.Google Scholar
  12. 12.
    M. Weber, Dynamical Systems and Processes, European Mathematical Society (Zürich, 2009).Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Marina Ninčević
    • 1
  • Braslav Rabar
    • 1
  • Siniša Slijepčević
    • 1
    Email author
  1. 1.Department of MathematicsUniversity of ZagrebZagrebCroatia

Personalised recommendations