Advertisement

Archiv der Mathematik

, Volume 98, Issue 4, pp 389–397 | Cite as

The floating body and the hyperplane conjecture

  • Daniel Fresen
Article
  • 158 Downloads

Abstract

We study the relationship between a convex body \({K\subset \mathbb{R}^{n}}\) and the convex floating body K δ inside K. Our results complement recent work of Grigoris Paouris and Elisabeth Werner.

Mathematics Subject Classification (2010)

Primary 52A23 52A20 Secondary 52A21 52A38 

Keywords

Hyperplane conjecture Floating body Log-concave Quantile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball K.: Logarithmically concave functions and sections of convex sets in \({\mathbb{R}^{n}}\) . Studia Math. 88, 69–84 (1988)MathSciNetzbMATHGoogle Scholar
  2. 2.
    K. Ball, An elementary introduction to modern convex geometry, Flavors of Geometry, MSRI Publications 31, 1997.Google Scholar
  3. 3.
    Bárány I., Larman D.: Convex bodies, economic cap coverings, random polytopes. Mathematika 35, 274–291 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bobkov S.: Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27, 1903–1921 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Borell C.: Convex set functions in d-space. Period. Math. Hungar. 6, 111–136 (1975)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bourgain J.: On high-dimensional maximal functions associated to convex bodies. Amer. J. Math. 108, 1467–1476 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    J. Bourgain, On the distribution of polynomials on high-dimensional convex sets, Geometric aspects of functional analysis, (1989–1990), 127–137, Lecture Notes in Math. 1469, Springer, Berlin (1991)Google Scholar
  8. 8.
    Fradelizi M.: Hyperplane sections of convex bodies in isotropic position. Beiträge Algebra Geom. 40, 163–183 (1999)MathSciNetzbMATHGoogle Scholar
  9. 9.
    D. Fresen, A multivariate Gnedenko law of large numbers, arXiv:1101.4887Google Scholar
  10. 10.
    Giannopoulos A., Paouris G., Valettas P.: On the existence of subgaussian directions for log-concave measures. Contemporary Mathematics 545, 103–122 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hensley D.: Slicing convex bodies-bounds for slice area in terms of the body’s covariance. Proc. Amer. Math. Soc. 79, 619–625 (1980)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Klartag B.: A central limit theorem for convex sets. Invent. Math. 168, 91–131 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Klartag B.: On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16, 1274–1290 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Klartag B., Milman V.: Geometry of log-concave functions and measures. Geom. Dedicata 112, 169–182 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lovász L., Vempala S.: The geometry of logconcave functions and sampling algorithms. Random Structures Algorithms 30, 307–358 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    V. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. Geometric aspects of functional analysis, Israel seminar (1987-1988), Lecture Notes in Math. 1376, Springer-Verlag, Berlin 64–104 (1989)Google Scholar
  17. 17.
    G. Paouris and E. Werner, Relative entropy of cone measures and L p centroid bodies, Proc. London Math. Soc. pdr030 first published online August 31, 2011 doi: 10.1112/plms/pdr030
  18. 18.
    Pisier G.: The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics 94. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  19. 19.
    Schütt C.: On the affine surface area. Proc. Amer. Math. Soc. 118, 1213–1218 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Schütt C.: The convex floating body and polyhedral approximation. Israel J. Math. 73, 65–77 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Schütt C., Werner E.: The convex floating body. Math. Scand. 66, 275–290 (1990)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Vu V.: Sharp concentration of random polytopes. Geom. and Funct. Anal. 15, 1284–1318 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MissouriColumbiaUSA

Personalised recommendations