Skip to main content
Log in

New upper bounds for the Davenport and for the Erdős–Ginzburg–Ziv constants

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let G be a finite abelian group (written additively) of rank r with invariants n 1, n 2, . . . , n r , where n r is the exponent of G. In this paper, we prove an upper bound for the Davenport constant D(G) of G as follows; D(G) ≤ n r + n r-1 + (c(3) − 1)n r-2 + (c(4) − 1) n r-3 + · · · + (c(r) − 1)n 1 + 1, where c(i) is the Alon–Dubiner constant, which depends only on the rank of the group \({{\mathbb Z}_{n_r}^i}\). Also, we shall give an application of Davenport’s constant to smooth numbers related to the Quadratic sieve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alford W.R., Granville A., Pomerance C.: There are infinitely many Carmichael numbers. Annals of Math. 140, 703–722 (1994)

    Article  MathSciNet  Google Scholar 

  2. Alon N., Dubiner M.: A lattice point problem and additive number theory. Combinatorica 15, 301–309 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Balasubramanian and G. Bhowmik, Upper bounds for the Davenport constant, Combinatorial number theory, 61–69, de Gruyter, Berlin, 2007.

  4. Edel Y. et al.: Zero-sum problems in finite abelian groups and affine caps. Q. J. Math. 58, 159–186 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdős P., Ginzburg A., Ziv A.: Theorem in the additive number theory. Bull. Res. Council Israel 10F, 41–43 (1961)

    Google Scholar 

  6. P. van Emde Boas and D. Kruswjik, A combinatorial problem on finite abelian group III, Z. W. 1969-008 (Math. Centrum, Amsterdam).

  7. Fan Y., Gao W., Zhong Q.: On the Erdős–Ginzburg–Ziv constant of finite abelian groups of high rank. J. Number Theory 131, 1864–1874 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freeze M., Schmid W.A.: Remarks on a generalization of the Davenport constant. Discrete Math. 310, 3373–3389 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao W.D.: On Davenport’s constant of finite abelian groups with rank three. Discrete Math. 222, 111–124 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao W.D., Geroldinger A: Zero-sum problems in finite abelian groups; a survey. Expo. Math. 24, 337–369 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, Vol. 278, Chapman & Hall/CRC, 2006.

  12. A. Geroldinger, M. Liebmann, and A. Philipp, On the Davenport constant and on the structure of extremal sequences, Period. Math. Hung.

  13. Geroldinger A., Schneider R.: On Davenport’s constant. J. Combin. Theory, Ser. A 61, 147–152 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Girard B.: Inverse zero-sum problems and algebraic invariants. Acta Arith. 135, 231–246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meshulam R.: An uncertainty inequality and zero subsums. Discrete Math. 84, 197–200 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Narkiewicz W., Śliwa J.: Finite abelian groups and factorization problems-II. Colloq. Math. 46, 115–122 (1982)

    MathSciNet  MATH  Google Scholar 

  17. J. E. Olson, A combinatorial problem in finite abelian groups, I and II, J. Number Theory, 1 (1969), 8–10 and 195–199.

  18. Pomerance C.: A tale of two sieves. Notices Amer. Math. Soc. 43, 1473–1485 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Rath P., Srilakshmi K., Thangadurai R.: On Davenport’s constant. Int. J. Number Theory 4, 107–115 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Reiher C.: On Kemnitz’ conjecture concerning lattice-points in the plane. Ramanujan J. 13, 333–337 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Schmid, The inverse problem associated to the Davenport constant for \({C_2\oplus C_2\oplus C_{2n},}\) and applications to the arithmetical characterization of class groups Electron. J. Comb., 18, Research Paper 33, (2011).

  22. Smertnig D.: On the Davenport constant and group algebras. Colloq. Math. 121, 179–193 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Chintamani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chintamani, M.N., Moriya, B.K., Gao, W.D. et al. New upper bounds for the Davenport and for the Erdős–Ginzburg–Ziv constants. Arch. Math. 98, 133–142 (2012). https://doi.org/10.1007/s00013-011-0345-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-011-0345-z

Mathematics Subject Classification (2010)

Keywords

Navigation