Skip to main content
Log in

Minimal subsystems of affine dynamics on local fields

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We describe the dynamics of an arbitrary affine dynamical system on a local field by exhibiting all its minimal subsystems. In the special case of the field \({\mathbb{Q}_p}\) of p-adic numbers, for any non-trivial affine dynamical system, we prove that the field \({\mathbb{Q}_p}\) is decomposed into a countable number of invariant balls or spheres each of which consists of a finite number of minimal subsets. Consequently, we give a complete classification of topological conjugacy for non-trivial affine dynamics on \({\mathbb{Q}_p}\) . For each given prime p, there is a finite number of conjugacy classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anashin V.S.: Ergodic transformations in the space of p-adic integers in p-adic mathematical physics. AIP Conference Proceedings 826, 3–24 (2006)

    Article  MathSciNet  Google Scholar 

  2. Anashin V.S, Khrennikov A.: Applied algebraic dynamics, de Gruyter Expositions in Mathematics 49. Walter de Gruyter & Co., Berlin (2009)

    Google Scholar 

  3. T. Budnytska, Topological conjugacy classes of affine maps, \({\tt arXiv:0812.4921v1}\) .

  4. Bryk J., Silva C.: Measurable dynamics of simple p-adic polynomials. Amer. Math. Monthly 112, 212–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cappell S.E., Shaneson J.L.: Linear algebra and topology. Bull. Amer. Math. Soc., New Series 1, 685–687 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cappell S.E., Shaneson J.L.: Nonlinear similarity of matrices. Bull. Amer. Math. Soc., New Series 1, 899–902 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cappell S.E., Shaneson J.L.: Non-linear similarity. Ann. Math. 113, 315–355 (1981)

    Article  MathSciNet  Google Scholar 

  8. Cappell S.E., Shaneson J.L.: Nonlinear similarity and differentiability. Comm. Pure Appl. Math. 38, 697–706 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cappell S.E., Shaneson J.L.: Non-linear similarity and linear similarity are equivariant below dimension 6. Contemp. Math. 231, 59–66 (1999)

    MathSciNet  Google Scholar 

  10. Chabert J.L., Fan A.H., Fares Y.: Minimal dynamical systems on a discrete valuation domain. Discrete Cont. Dyn. Syst. 25, 777–795 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coelho Z., Parry W.: Ergodicity of p-adic multiplications and the distribution of Fibonacci numbers, Topology, Ergodic Theory, Real Algebraic Geometry. Amer. Math. Soc. Transl. Ser. 2 202, 51–70 (2001)

    MathSciNet  Google Scholar 

  12. H. Diao and C. Silva, Digraph representations of rational functions over the p-adic numbers, \({\tt arXiv:0909.4130v1}\) .

  13. Evrard S., Fares Y.: p-adic subsets whose factorials satisfy a generalized Legendre Formula. Bull Lond Math. Soc. 40, 37–50 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. H. Fan et al., Strict ergodicity of affine p-adic dynamical systems on \({\mathbb{Z}_p}\) . Advances in Mathematics 214 (2007), 666–700. See also A. H. Fan et al.p-adic affine dynamical systems and applications, C. R. Acad. Sci. Paris, Ser. I 342 (2006), 129–134.

  15. A. H. Fan and L. M. Liao, On minimal decomposition of p-adic polynomial dynamical systems, preprint.

  16. Kuiper N.H, Robbin J.W.: Topological classification of linear endomorphisms. Invent. Math. 19, 83–106 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gundlach M., Khrennikov A., Lindahl K.O.: On ergodic behavior of p-adic dynamical systems. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4, 569–577 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Herman M.R., Yoccoz J.C., (1983) Generalization of some theorem of small divisors to non-Archimedean fields, Geometric Dynamics, LNM 1007, Springer-Verlag: 408–447

  19. A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer, 1997.

  20. Khrennikov A., Nilsson M.: On the number of cycles of p-adic dynamical systems. J. Number Theory 90, 255–264 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Khrennikov and M. Nilsson, p-adic deterministic and random dynamics, Kluwer Academic Publ, 2004.

  22. Kingsbery J. et al.: Measurable dynamics of maps on profinite groups. Indag. Math. 18, 561–581 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lubin J.: Non-Archimedean dynamical systems. Compositio Mathematica 94, 321–346 (1994)

    MathSciNet  MATH  Google Scholar 

  24. J. M. Luck, P. Moussa, and M. Waldschmidt (editors), Number theory and physics, Springer Proceedings in Physics 47, Springer-Verlag, 1990.

  25. Oselies R., Zieschang H.: Ergodische Eigenschaften der Automorphismen p-adischer Zahlen. Arch. Math 26, 144–153 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schikhof W.H., Ultrametric calculus, Cambrige University Press, 1984.

  27. J. Silverman, The Arithmetic of Dynamical Systems, Springer-Verlag, 2007.

  28. V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-adic Analysis and Mathematical Physics, Series on Soviet and East European Mathematics 1, World Scientific, (1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Fares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, AH., Fares, Y. Minimal subsystems of affine dynamics on local fields. Arch. Math. 96, 423–434 (2011). https://doi.org/10.1007/s00013-011-0245-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-011-0245-2

Mathematics Subject Classification (2010)

Keywords

Navigation