Skip to main content
Log in

Orlicz regularity for higher order parabolic equations in divergence form with coefficients in weak BMO

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We consider higher order parabolic equations in divergence form with measurable coefficients to find optimal regularity in Orlicz spaces of the maximum order derivatives of the weak solutions. The relevant minimal regularity requirement on the tensor matrix coefficients is of small BMO in the spatial variable and is measurable in the time variable. As a consequence we prove the classical W m,p regularity, m = 1, 2, . . . , 1 < p < ∞, for such higher order equations. In the same spirit the results easily extend to higher order parabolic systems as well as up to the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Acerbi E., Mingione G.: Gradient estimates for the p(x)-Laplacean system. J. Reine Angew. Math. 584, 117–148 (2005)

    MATH  MathSciNet  Google Scholar 

  2. Acerbi E., Mingione G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136, 285–320 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adams R.: Sobolev spaces. Academic press, New York (1975)

    MATH  Google Scholar 

  4. Birnbaum Z.W., Orlicz W.: Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Studia Mathematica 3, 1–67 (1931)

    MATH  Google Scholar 

  5. Byun S.: Optimal W 1,p regularity theory for Parabolic equations in divergence form. J. Evol. Equ. 7, 415–428 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Byun S.: Hessian estimates in Orlicz spaces for fourth-order parabolic systems in nonsmooth domains. J. Differential Equations 246, 3518–3534 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Byun S., Ryu S.: Global Estimates in Orlicz Spaces for the Gradient of Solutions to Parabolic systems. Proc. Amer. Math. Soc. 138, 641–653 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Byun S., Wang L.: Fourth-order parabolic equations with weak BMO coefficients in Reifenberg domains. J. Differential Equations 245, 3217–3252 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Byun S., Wang L.: Parabolic equations in time dependent Reifenberg domains. Adv. Math. 212, 797–818 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Byun S., Yao F., Zhou S.: Gradient estimates in Orlicz space for nonlinear elliptic equations. J. Funct. Anal. 255, 1851–1873 (2008)

    MATH  MathSciNet  Google Scholar 

  11. Caffarelli L.A., Peral I.: On W 1,p estimates for elliptic equations in divergence form. Comm. Pure Appl. Math. 51, 1–21 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies 105, Princeton University Press, Princeton, NJ, 1983.

  13. Gurevich P.: Smoothness of generalized solutions for higher-order elliptic equations with nonlocal boundary conditions. J. Differential Equations 245, 1323–1355 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kim D., Krylov N.V.: Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others. SIAM J. Math. Anal. 39, 489–506 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kokilashvili V., Krbec M.: Weighted inequalities in Lorentz and Orlicz spaces. World Scientific Publishing Co., Inc., River Edge, NJ (1991)

    MATH  Google Scholar 

  16. Miyazaki Y.: Higher order elliptic operators of divergence form in C 1 or Lipschitz domains. J. Differential Equations 230, 174–195 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Orlicz W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Int. Acad. Polon. Sci. A 8/9, 207–220 (1932)

    Google Scholar 

  18. Palagachev D., Softova L.: A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete Contin. Dyn. Syst. 13, 721–742 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Textbooks in Pure and Applied Mathematics 146, Marcel Dekker, Inc., New York, 1991.

  20. Wang L.: A geometric approach to the Calderón-Zygmund estimates. Acta Math. Sin. (Engl. Ser.) 19, 381–396 (2003)

    Article  MathSciNet  Google Scholar 

  21. Wang L. et al.: Optimal regularity theory for the Poisson equation. Proc. Amer. Math. Soc. 137, 2037–2047 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yao F.: Regularity theory in Orlicz spaces for the parabolic polyharmonic equations. Arch. Math. (Basel) 90, 429–439 (2008)

    MATH  MathSciNet  Google Scholar 

  23. Yao F. et al.: Regularity theory in Orlicz spaces for the Poisson and heat equations. Commun. Pure Appl. Anal. 7, 407–416 (2008)

    MATH  MathSciNet  Google Scholar 

  24. Yao F., Sun Y., Zhou S.: Gradient estimates in Orlicz spaces for quasilinear elliptic equation. Nonlinear Anal. 69, 2553–2565 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yao F., Zhou S.: A new proof of L p estimates for the parabolic polyharmonic equations. Sci. China Ser. A 52, 749–756 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Sig Byun.

Additional information

This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)(2009-0093135).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byun, SS., Ryu, S. Orlicz regularity for higher order parabolic equations in divergence form with coefficients in weak BMO. Arch. Math. 95, 179–190 (2010). https://doi.org/10.1007/s00013-010-0151-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-010-0151-z

Mathematics Subject Classification (2000)

Keywords and phrases

Navigation