Skip to main content

Amplification arguments for large sieve inequalities

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


We give a new proof of the arithmetic large sieve inequality based on an amplification argument, and use a similar method to prove a new sieve inequality for classical holomorphic cusp forms. A sample application of the latter is also given.

This is a preview of subscription content, access via your institution.


  1. 1.

    R. Bruggeman, Fourier coefficients of cusp forms, Invent. math. 45 (1978), 1–18.

    MATH  Article  MathSciNet  Google Scholar 

  2. 2.

    B. Conrey, W. Duke, and D. Farmer, The distribution of the eigenvalues of Hecke operators, Acta Arith. 78 (1997), 405–409.

    MATH  MathSciNet  Google Scholar 

  3. 3.

    J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. math. 70 (1982), 220–288.

    Article  MathSciNet  Google Scholar 

  4. 4.

    W. Duke and E. Kowalski, A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations, with an Appendix by D. Ramakrishnan, Invent math. 139 (2000), 1–39.

  5. 5.

    H. Halberstam and H. E. Richert, Sieve methods, London Math. Soc. Monograph, Academic Press (London), 1974

  6. 6.

    H. Iwaniec, W. Kohnen, and J. Sengupta, The first negative Hecke eigenvalue, International J. Number Theory 3 (2007), 355–363.

    MATH  Article  MathSciNet  Google Scholar 

  7. 7.

    H. Iwaniec and E. Kowalski, Analytic number theory, AMS Colloquium Publ. 53, 2004.

  8. 8.

    E. Kowalski, The large sieve and its applications: arithmetic geometry, random walks and discrete groups, Cambridge Tracts in Math. 175, 2008.

  9. 9.

    Y. K. Lau and J. Wu, A large sieve inequality of Elliott–Montgomery–Vaughan type for automorphic forms and two applications, International Mathematics Research Notices, Vol. 2008 , doi:10.1093/imrn/rmn162.

  10. 10.

    H.-L. Montgomery, Topics in multiplicative number theory, Lecture Notes Math. 227, Springer-Verlag 1971.

  11. 11.

    H.-L. Montgomery, The analytic principle of the large sieve, Bull. A.M.S. 84 (1978), 547–567.

    MATH  Article  Google Scholar 

  12. 12.

    E. Royer, Facteurs Q-simples de J 0(N) de grande dimension et de grand rang, Bull. Soc. Math. France 128 (2000), 219–248.

    MATH  MathSciNet  Google Scholar 

  13. 13.

    P. Sarnak, Statistical properties of eigenvalues of the Hecke operators, in: Analytic Number Theory and Diophantine Problems (Stillwater, OK, 1984), Progr. Math. 70, Birkhäuser, 1987, 321–331.

  14. 14.

    J.-P. Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke T p , J. Amer. Math. Soc. 10 (1997), 75–102.

    MATH  Article  MathSciNet  Google Scholar 

  15. 15.

    F. Shahidi, Symmetric power L-functions for GL(2), in: Elliptic curves and related topics, E. Kishilevsky and M. Ram Murty (eds.), CRM Proc. and Lecture Notes 4, 1994, 159–182.

Download references

Author information



Corresponding author

Correspondence to E. Kowalski.

Additional information

This work was completed while on sabbatical leave at the Institute for Advanced Study (Princeton, NJ). This material is based upon work supported by the National Science Foundation under agreement No. DMS-0635607. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kowalski, E. Amplification arguments for large sieve inequalities. Arch. Math. 94, 443–457 (2010).

Download citation

Mathematics Subject Classification (2000)

  • Primary 11N35
  • 11F11


  • Large sieve inequality
  • Modular form
  • Amplification