Skip to main content
Log in

On the existence and nonexistence of global solutions for the porous medium equation with strongly nonlinear sources in a cone

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we study the initial-boundary value problem of the porous medium equation u t  = Δu m + V(x)u p in a cone D = (0, ∞) × Ω, where V(x) ~ (1 + |x|)σ. Let ω 1 denote the smallest Dirichlet eigenvalue for the Laplace–Beltrami operator on Ω and let l denote the positive root of l 2 + (n − 2)l = ω 1. We prove that if m ≤ p ≤ m + (2 + σ)/(n + l), then the problem has no global nonnegative solutions for any nonnegative u 0 unless u 0 = 0; if p > m + (2 + σ)/n, then the problem has global solutions for some u 0 ≥ 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreucci D., Di Benedetto E.: On the Cauchy problem and initial traces for a class of evolution equation with strongly nonlinear sources. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18, 363–441 (1991)

    MATH  MathSciNet  Google Scholar 

  2. Bandle C., Levine H.A.: On the existence and nonexistence of global solutions of reaction–diffusion equations in sectorial domains. Trans. Amer. Math. Soc. 316, 595–624 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Deng K., Levine H.A.: The role of critical exponents in blow-up theorems: The Sequel. J. Math. Anal. Appl. 243, 85–126 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. V. A. Galaktionov et al., On unbounded solutions of the Cauchy problem for a parabolic equation \({u_t=\nabla(u^\sigma\nabla u)+u^\beta}\), Dokl. Akad. Nauk SSSR 252 (1980), 1362–1364, (in Russian); English translation Sov. Phys. Dokl. 25 (1980), 458–459.

    Google Scholar 

  5. V. A. Galaktionov, Boundary value problems for the nonlinear parabolic equation u t  = Δu 1+σ + u β, Differentsial’nye Uravneniya, 17 (1981), 836–842, (In Russian); English translation Differential Equations, 17 (1981), 551–556.

  6. Kawanago T.: Existence and behaviour of solutions for u t  = Δ(u m) + u l. Adv. Math. Sci. Appl. 7, 367–400 (1997)

    MATH  MathSciNet  Google Scholar 

  7. Levine H.A.: The role of critical exponents in blow-up theorems. SIAM Review 32, 262–288 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Levine H.A., Meier P.: The value of the critical exponent for reaction-diffusion equations in cones. Arch. Ration. Mech. Anal 109, 73–80 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Laptev G.G.: Nonexistence of solutions for parabolic inequalities in unbounded cone-like domains via the test function method. J. Evol. Equ. 2, 459–470 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pinsky R.G.: Existence and nonexistence of global solutions for u t = Δu + a(x)u p in R d. J. Differential Equations 133, 152–177 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhang Q.S.: A critical behavior for some semilinear parabolic equations involving sign changing solutions. Nonlinear Analysis 50, 967–980 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhang Q.S.: Blow up results for nonlinear parabolic problems on manifolds. Duke Math. J. 97, 515–539 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changchun Liu.

Additional information

The work was supported by the 985 program of Jilin University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lian, S., Liu, C. On the existence and nonexistence of global solutions for the porous medium equation with strongly nonlinear sources in a cone. Arch. Math. 94, 245–253 (2010). https://doi.org/10.1007/s00013-009-0081-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-009-0081-9

Mathematics Subject Classification (2000)

Keywords

Navigation