Skip to main content
Log in

On element-centralizers in finite groups

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

For any group G, let |Cent(G)| denote the number of centralizers of its elements. A group G is called n-centralizer if |Cent(G)| = n. In this paper, we find |Cent(G)| for all minimal simple groups. Using these results we prove that there exist finite simple groups G and H with the property that |Cent(G)| = |Cent(H)| but \({G\not\cong H}\) . This result gives a negative answer to a question raised by A. Ashrafi and B. Taeri. We also characterize all finite semi-simple groups G with |Cent(G)| ≤  73.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdollahi A., Akbari S. and Maimani H.R. (2006). Non-commuting graph of a group. J. Algebera 298: 468–492

    Article  MATH  MathSciNet  Google Scholar 

  2. Abdollahi A., Jafarian Amiri S.M. and Mohammadi Hassanabadi A. (2007). Groups with specific number of centralizers. Houston J. Math. 33: 43–57

    MATH  MathSciNet  Google Scholar 

  3. Ashrafi A.R. (2000). On finite groups with a given number of centralizers. Algebra Colloq. 7: 139–146

    Article  MATH  MathSciNet  Google Scholar 

  4. Ashrafi A.R. (2000). Counting the centralizers of some finite groups. Korean J. Comput. Appl. Math. 7: 115–124

    MATH  MathSciNet  Google Scholar 

  5. Ashrafi A.R. and Taeri B. (2005). On finite groups with a certain number of centralizers. J. Appl. Math. Computing 17: 217–227

    Article  MATH  MathSciNet  Google Scholar 

  6. Barry M.J.J. and Ward M.B. (1997). Simple groups contain minimal simple groups. Publ. Mat. 41: 411–415

    MATH  MathSciNet  Google Scholar 

  7. Belcastro S.M. and Sherman G.J. (1994). Counting centralizers in finite groups. Math. Mag. 5: 111–114

    MathSciNet  Google Scholar 

  8. Blyth R.D. and Robinson D.J.S. (1991). Insoluble groups with the rewriting property P 8. J. Pure Appl. Algebra 72: 251–263

    Article  MATH  MathSciNet  Google Scholar 

  9. Huppert B. (1967). Endliche Gruppen, I. Springer-Verlag, Berlin

    MATH  Google Scholar 

  10. Huppert B. and Blackburn N. (1982). Finite groups, III. Springer-Verlag, Berlin

    MATH  Google Scholar 

  11. Robinson D.J.S. (1995). A course in the theory of groups, 2nd ed., Springer-Verlag, Berlin-New York

    MATH  Google Scholar 

  12. The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4; 2005 (http://www.gap-system.org).

  13. Thompson J.G. (1968). Nonsolvable finite groups all of whose local subgroups are solvable (Part I). Bull. Amer. Math. Soc. (NS) 74: 383–437

    Article  MATH  Google Scholar 

  14. Wilson J.S. (2006). Finite axiomatization of finite soluble groups. J. London Math. Soc. 74(2): 566–582

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Zarrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarrin, M. On element-centralizers in finite groups. Arch. Math. 93, 497–503 (2009). https://doi.org/10.1007/s00013-009-0060-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-009-0060-1

Mathematics Subject Classification (2000)

Keywords

Navigation