Skip to main content
Log in

A note on semigroups, groups and geometric lattices

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let G be a closed, additive semigroup in a Hausdorff topological vector space. Then G is a group if and only if it satisfies natural convexity conditions of algebraic or geometric-topological type. This yields a characterization of the geometric lattices among the discrete, additive semigroups of Euclidean d-space \({\mathbb{E}^{d}}\) and, more generally, of direct sums of subspaces and lattices in \({\mathbb{E}^{d}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bourbaki, Éléments de mathématique. Premiére partie: Les structures fondamentales de l’analyse. Livre III: Topologie générale, Chapitre VII: Les groupes additifs R n, Actualités Sci. Ind. 1029, Hermann et Cie., Paris 1947.

  2. Conway J.H., Sloane N.J.A.: Sphere packings, lattices and groups, 3rd ed. Springer-Verlag, New York (1999)

    MATH  Google Scholar 

  3. P. Engel, Geometric crystallography, in: Handbook of convex geometry B 989–1041, North-Holland, Amsterdam 1993.

  4. Erdös P., Gruber P.M., Hammer J.: Lattice points. Longman Scientific & Technical, Harlow, John Wiley & Sons, New York (1989)

    MATH  Google Scholar 

  5. P. M. Gruber, Convex and discrete geometry, Grundl. Math. Wiss. 336, Springer-Verlag, Berlin, Heidelberg, New York 2007.

  6. P. M. Gruber, and C. G. Lekkerkerker, Geometry of numbers, 2nd ed., North-Holland, Amsterdam 1987, Nauka, Moscow 2008.

  7. E. Hewitt, and K. A. Ross, Abstract harmonic analysis I, Structure of topological groups, integration theory, group representations, 2nd ed., Grundl. Math. Wiss. 115, Springer-Verlag, Berlin, New York 1979.

  8. D. Krassowska, T. Małolepszy, and J. Matkowski, A pair of functional inequalities characterizing polynomials and Bernoulli numbers, Aequationes Math. 75 (2008) 276–288.

    Google Scholar 

  9. Matkowski J.: The converse of the Minkowski’s inequality theorem and its generalization. Proc. Amer. Math. Soc. 109, 663–675 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Schneider R.: Convex bodies: the Brunn-Minkowski theory. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  11. J. Schwaiger, Remarks on a paper about functional inequalities for polynomials and Bernoulli numbers, Aequationes Math., to appear.

  12. Siegel C.L.: Lectures on the geometry of numbers. Springer-Verlag, Berlin (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Gruber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flor, P., Gruber, P.M. A note on semigroups, groups and geometric lattices. Arch. Math. 93, 253–258 (2009). https://doi.org/10.1007/s00013-009-0029-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-009-0029-0

Mathematics Subject Classification (2000)

Keywords

Navigation