Skip to main content
Log in

Wiener-Hopf operators on \(L_{\omega}^{2}(\mathbb{R}^{+})\)

  • Original Paper
  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract.

Let \(L_{\omega}^{2}(\mathbb{R}^{+})\) be a weighted space with weight ω. In this paper we show that for every Wiener-Hopf operator T on \(L_{\omega}^{2}(\mathbb{R}^{+})\) and for every aIω, there exists a function \(v_a \in L^\infty (\mathbb{R})\) such that

$$(Tf)_a = P^ + \mathcal{F}^{ - 1} (v_a \widehat{(f)_a }),$$

for all \(f \in C_c^\infty (\mathbb{R}^ + ).\) Here (g) a denotes the function xg(x)eax for \(g \in L_\omega ^2 (\mathbb{R}^ + ),P^ + f = \chi _{\mathbb{R}^{+}}f\) and \(I_\omega = [\ln R_\omega ^ - ,\ln R_\omega ^ + ],\) where R +ω is the spectral radius of the shift S : f(x) → f(x−1) on \(L_{\omega}^{2}(\mathbb{R}^{+}),\) while \(\frac{1}{R_{\omega}^{-}}\) is the spectral radius of the backward shift S−1 : f(x) → (P+f)(x+1) on \(L_{\omega}^{2}(\mathbb{R}^{+}).\) Moreover, there exists a constant Cω, depending on ω, such that \(||v_a ||_\infty \leqq C_\omega ||T||\) for every aIω. If R ω < R +ω , we prove that there exists a bounded holomorphic function v on \({\mathop A\limits^{\circ}}_{\omega}:=\{ z \in \mathbb{C} | \,{\text{Im}}\, z \in {\mathop I\limits^{\circ}}_{\omega}\}\) such that for \(a \in {\mathop I\limits^{\circ}}_{\omega} ,\) the function v a is the restriction of v on the line \(\{z \in \mathbb{C} | \,{\text{Im}}\, z = a\} .\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Petkova.

Additional information

Received: 18 May 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petkova, V. Wiener-Hopf operators on \(L_{\omega}^{2}(\mathbb{R}^{+})\). Arch. Math. 84, 311–324 (2005). https://doi.org/10.1007/s00013-004-1167-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-004-1167-z

Mathematics Subject Classification (2000).

Navigation