Adams, M.E., Adaricheva, K.V., Dziobiak, W., Kravchenko, A.V.: Some open questions related to the problem of Birkhoff and Maltsev. Stud. Logica. 78, 357–378 (2004)
Article
Google Scholar
Adams, M.E., Dziobiak, W.: Finite-to-finite universal quasivarieties are \(Q\)-universal. Algebra Univers. 46, 253–283 (2001)
MathSciNet
Article
Google Scholar
Adams, M.E., Dziobiak, W.: Remarks about the \(Q\)-lattice of the variety of lattices. Algebra Univers. 82 (2021)
Adams, M.E., Dziobiak, W., Kravchenko, A.V., Schwidefsky, M.V: Remarks about complete lattice homomorphic images of algebraic lattices (2020)
Adams, M.E., Dziobiak, W., Sankappanavar, H.P.: Universal varieties of quasi-Stone algebras. Algebra Univers. 76, 155–182 (2016)
MathSciNet
Article
Google Scholar
Birkhoff, G.: Universal algebra. In: Proceedings of the First Canadian Math. Congress (Montreal, 1945), 310–326. The University of Toronto Press, Toronto (1946)
Fischer, S.K.: Amalgamation in the varieties of quasi-Stone algebras, PhD thesis, University of Bern (2011)
Fraser, G.A., Horn, A.: Congruence relations in direct products. Proc. Am. Math. Soc. 26, 390–394 (1970)
MathSciNet
Article
Google Scholar
Freese, R., Ježek, J., Nation, J.B.: Free Lattices. Mathematical Surveys and Monographs vol. 42. American Mathematical Society, Providence, RI (1995)
Gaitán, G.: Priestley duality for quasi-Stone algebras. Stud. Log. 64, 83–92 (2000)
MathSciNet
Article
Google Scholar
Gorbunov, V.A.: Algebraic Theory of Quasivarieties. Plenum Publishing Co., New York (1998)
MATH
Google Scholar
Grätzer, G., Kelly, D.: Subdirectly irreducible members of products of lattice varieties. Proc. Am. Math. Soc. 102, 483–489 (1988)
MathSciNet
Article
Google Scholar
Z. Hedrlín, Z., Pultr, A.: On full embeddings of categories of algebras. IL. J. Math. 10, 392–406 (1966)
Hyndman, J., Nation, J.B.: The Lattice of Subquasivarieties of a Locally Finite Quasivariety. Springer, New York (2018)
Koubek, V., Sichler, J.: On relative universality and Q-universality. Stud. Logic 78, 279–291 (2004)
MathSciNet
Article
Google Scholar
Koubek, V., Sichler, J.: Almost \(\mathit{ff}\)-universal and Q-universal varieties of modular 0-lattices. Colloq. Math. 101, 161–182 (2004)
MathSciNet
Article
Google Scholar
Koubek, V., Sichler, J.: On synchronized relatively full embeddings and Q-universality. Cah. Topol. Géom. Différ. Catég. 49, 289–306 (2008)
MathSciNet
MATH
Google Scholar
Koubek, V., Sichler, J.: Almost \(\mathit{ff}\)-universality implies \(Q\)-universality. Appl. Categ. Struct. 17, 419–434 (2009)
MathSciNet
Article
Google Scholar
Koubek, V., Sichler, J.: On relative universality and Q-universality of finitely generated varieties of Heyting algebras. Sci. Math. Jpn. 74, 63–115 (2011)
MathSciNet
MATH
Google Scholar
Kravchenko, A.V., Nurakunov, A.M., Schwidefsky, M.V.: On the structure of quasivarieties. I. Independent axiomatizability. Algebra Logic 57, 445–462 (2019)
Kravchenko, A.V., Nurakunov, A.M., Schwidefsky, M.V.: On the structure of quasivarieties. II. Undecidable problems. Algebra Logic 58, 123–136 (2019)
Libkin, L.: n-Distributivity, dimension and Carathéodory’s theorem. Algebra Univers. 34, 72–95 (1995)
Article
Google Scholar
Maltsev, A.I.: Multiplication of classes of algebraic systems. Sibirsk. Mat. Ž. 8, 346–365 (1967). (Russian)
MathSciNet
Google Scholar
Maltsev, A.I.: Problems on the Borderline of Algebra and Logic, pp. 217–231. Proc. Inter. Congress of Mathematicians, Moscow (1968)
Google Scholar
Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2, 186–190 (1970)
MathSciNet
Article
Google Scholar
Pultr, P., Trnková, V.: Combinatorial, Algebraic and Topological Representations of Groups. Semigroups and Categories. North-Holland, Amsterdam (1980)
MATH
Google Scholar
Sankappanavar, N.H., Sankappanavar, H.P.: Quasi-Stone algebras. Math. Logic Quart. 39, 255–268 (1993)
MathSciNet
Article
Google Scholar
Sapir, M.V.: The lattice of quasivarieties of semigroups. Algebra Univers. 21, 172–180 (1985)
MathSciNet
Article
Google Scholar
Schwidefsky, M.V.: Existence of independent quasi-equational bases. Algebra Logic 58, 514–537 (2020)
MathSciNet
Article
Google Scholar