Skip to main content

On a new construction of pseudocomplemented semilattices


In the theory of semigroups there exists a construction of some semilattices from a special family of semigroups. It is the so-called ‘strong semilattice of semigroups’. Modifying this idea we can present a new construction method for arbitrary pseudocomplemented semilattice (= PCS) L using ‘full triples’. This construction centers around the classical Glivenko-Frink congruence \(\Gamma (L)\). This fact plays an important role. Namely, PCS L is a disjoint union of all congruence classes of \(\Gamma (L)\) (or of GF-blocks for short). In order to get a ‘full triple’ of L, the so-called ‘associate’ full triple of L, we need the Boolean algebra of closed elements B(L), the whole family of GF-blocks \(\{\,\Gamma _a\mid a\in B(L)\,\}\) and a suitable semilattice homomorphism \(\varphi _{a,b}:\Gamma _a\rightarrow \Gamma _b\) for any \(a\ge b\) in B(L). There is also a definition of an ‘abstract’ full triple, which we use by a construction of a PCS. The notion of a full triple is an extension of the ‘classical’ triple, which do work only with just one GF-block D(L) satisfying \(1\in D(L)\). It is known that there exist PCS’s which cannot be constructed by using a classical triple method. In addition, we explore in some detail the homomorphisms and the subalgebras of PCS’s.

This is a preview of subscription content, access via your institution.


  1. 1.

    Balbes, R., Dwinger, Ph: Distributive Lattices. Univ. Missouri Press, Missouri (1974)

    MATH  Google Scholar 

  2. 2.

    Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Heldermann, Lemgo (2007)

    MATH  Google Scholar 

  3. 3.

    Chen, C.C., Grätzer, G.: Stone lattices. I. Construction theorems, II. Structure theorems. Can. J. Math. 21, 884–894 (1969). pp. 895–903

    Article  Google Scholar 

  4. 4.

    Cornish, W.H.: Pseudocomplemented modular semilattices. J. Austr. Math. Soc. 18, 239–251 (1974)

    Article  Google Scholar 

  5. 5.

    Frink, O.: Pseudo-complements in semi-lattices. Duke Math. J. 29, 505–514 (1962)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Glivenko, V.: Sur quelques points de la logique de M. Brouwer. Bull. Acad. Bruxelles (5) 15, 183–188 (1929)

    MATH  Google Scholar 

  7. 7.

    Grätzer, G.: Lattice Theory: Foundation, Springer Basel AG (Birkhäuser) (2011)

  8. 8.

    Howie, J.M.: An Introduction to Semigroup Theory. Academic Press, London, New York, San Francisco (1976)

    MATH  Google Scholar 

  9. 9.

    Jones, G.T.: Projective pseudocomplemented semilattices. Pac. J. Math. 32, 443–456 (1974)

    Article  Google Scholar 

  10. 10.

    Katriňák, T.: Die Kennzeichnung der distributiven pseudokomplementären Halbverbände. J. Reine Angew. Math. 241, 160–179 (1970)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Katriňák, T.: A new proof of the construction theorem for Stone algebras. Proc. Am. Math. Soc. 40, 75–78 (1973)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Katriňák, T.: p-Algebras, Colloq. Math. Soc. J. Bolyai, Contrib. Lattice Theory, Szeged (Hungary) 33, 549–573 (1980)

  13. 13.

    Katriňák, T., Mederly, P.: Constructions of p-algebras. Algebra Univ. 17, 288–316 (1983)

    Article  Google Scholar 

  14. 14.

    Katriňák, T., Guričan, J.: Finite pseudocomplemented lattices: the spectra and the Glivenko congruence. Algebra Univ. 66, 151–161 (2011)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Katriňák, T., Guričan, J.: Free pseudocomplemented semilattices: a new approach. Algebra Univ. 74, 303–331 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Mederly, P.: A characterization of modular pseudocomplemented semilattices, Colloq. Math. Soc. J. Bolyai, Lattice Theory, Szeged (Hungary) 14, 231–248 (1974)

  17. 17.

    Nemitz, W.C.: Implicative semi-lattices. Trans. Am. Math. Soc. 117, 128–142 (1965)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Schmid, J.: On the structure of free pseudocomplemented semilattices. Houston J. Math. 16, 71–86 (1990)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Schmidt, J.: Quasi-decompositions, exact sequences and triple sum of semigroups. I. General theory, II. Applications. Colloq. Math. Soc. J. Bolyai 17, 365–397 (1975)

Download references


Our thanks go the referee who read the paper with extraordinary care and patience. His/her constructive criticisms have been invaluable.

Author information



Corresponding author

Correspondence to Tibor Katriňák.

Additional information

Dedicated to the memory of R. Wille, K. Keimel and P. Burmeister.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

While working on this paper, both authors were supported by VEGA grant No. 1/0333/17 of Slovak Republic.

Communicated by Presented by M. Haviar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katriňák, T., Guričan, J. On a new construction of pseudocomplemented semilattices. Algebra Univers. 82, 54 (2021).

Download citation


  • Pseudocomplemented semilattice
  • Closed elements
  • Dense element
  • Glivenko-Frink congruence
  • GF-block
  • Associated full triple
  • Abstract full triple

Mathematics Subject Classification

  • 06A12
  • 06D15
  • 06D20
  • 08A05
  • 08A30