Skip to main content

Equational theories of upper triangular tropical matrix semigroups

Abstract

Let \(\mathbb {S}\) be the commutative and idempotent semiring with additive identity \(\mathbf {0}\) and multiplicative identity \(\mathbf {1}\). The tropical semiring \(\mathbb {T}\) and the Boolean semiring \(\mathbb {B}\) are common important examples of such semirings. Let \(UT_{n}(\mathbb {S})\) be the semigroup of all \(n\times n\) upper triangular matrices over \(\mathbb {S}\), both \(UT^{\pm }_n(\mathbb {S})\) and \(UT^{+}_n(\mathbb {S})\) be subsemigroups of \(UT_n(\mathbb {S})\) with \(\mathbf {0}\) and/or \(\mathbf {1}\) on the main diagonal, and \(\mathbf {1}\) on the main diagonal respectively. It is known that \(UT_{2}(\mathbb {T})\) is non-finitely based and \(UT^{\pm }_{2}(\mathbb {S})\) is finitely based. Combining these results, the finite basis problems for \(UT_{n}(\mathbb {T})\) and \(UT^{\pm }_{n}(\mathbb {S})\) with \(n=2, 3\) both as semigroups and involution semigroups under the skew transposition are solved. It is well known that the semigroups \(UT^{+}_n(\mathbb {S})\) and \(UT^{+}_n(\mathbb {B})\) are equationally equivalent. In this paper, we show that the involution semigroups \(UT^{+}_n(\mathbb {S})\) and \(UT^{+}_n(\mathbb {B})\) under the skew transposition are not equationally equivalent. Nevertheless, the finite basis problems for involution semigroups \(UT_n^{+}(\mathbb {S})\) and \(UT_n^{+}(\mathbb {B})\) share the same solution, that is, the involution semigroup \(UT_n^{+}(\mathbb {S})\) is finitely based if and only if \(n=2\).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Auinger, K., Chen, Y.Z., Hu, X., Luo, Y.F., Volkov, M.V.: The finite basis problem for Kauffman monoids. Algebra Univers. 74, 333–350 (2015)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Auinger, K., Dolinka, I., Pervukhina, T.V., Volkov, M.V.: Unary enhancements of inherently non-finitely based semigroups. Semigroup Forum 89, 41–51 (2014)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Auinger, K., Dolinka, I., Volkov, M.V.: Matrix identities involving multiplication and transposition. J. Eur. Math. Soc. 14, 937–969 (2012)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Auinger, K., Dolinka, I., Volkov, M.V.: Equational theories of semigroups with involution. J. Algebra 369, 203–225 (2012)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Butkovic̆, P.: Max-algebra: the linear algebra of combinatorics? Linear Algebra Appl. 367, 313–335 (2003)

  6. 6.

    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, New York (1981)

    Book  Google Scholar 

  7. 7.

    Blanchet-Sadri, F.: Equations and dot-depth one. Semigroup Forum 47, 305–317 (1993)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Blanchet-Sadri, F.: Equations and monoid varieties of dot-depth one and two. Theor. Comput. Sci. 123, 239–258 (1994)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Chen, Y.Z., Hu, X., Luo, Y.F., Sapir, O.: The finite basis problem for the monoid of two-by-two upper triangular tropical matrices. Bull. Aust. Math. Soc. 94, 54–64 (2016)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Chen, Y.Z., Hu, X., Luo, Y.F.: On the finite basis problem for certain semigroup of upper triangular matrices over a field. J. Algebra Appl. 15, 1650177 (2016)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Cohen, G., Gaubert, S., Quadrat, J.P.: Max-plus algebra and system theorywhere we are and where to go now. Ann. Rev. Control 23, 207–219 (1999)

    Article  Google Scholar 

  12. 12.

    Cain, A.J., Klein, G., Kubat, L., Malheiro, A., Okniński, J.: A note on identities in plactic monoids and monoids of upper-triangular tropical matrices. arXiv:1705.04596

  13. 13.

    Dolinka, I.: On identities of finite involution semigroups. Semigroup Forum 80, 105–120 (2010)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Daviaud, L., Johnson, M., Kambites, M.: Identities in upper triangular tropical matrix semigroups and the bicyclic monoid. J. Algebra 501, 503–525 (2018)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Gao, M., Zhang, W.T., Luo, Y.F.: The monoid of \(2 \times 2\) triangular boolean matrices under skew transposition is non-finitely based. Semigroup Forum 100, 153–168 (2020)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Gao, M., Zhang, W.T., Luo, Y.F.: A non-finitely based involution semigroup of order five. Algebra Univers. 81, 31 (2020)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Hu, X., Chen, Y.Z., Luo, Y.F.: On the finite basis problem for some semigroups of upper triangular matrices. (manuscript)

  18. 18.

    Izhakian, Z.: Semigroup identities in the monoid of triangular tropical matrices. Semigroup Forum 88, 145–161 (2014)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Izhakian, Z.: Tropical plactic algebra, the cloaktic monoid, and semigroup representations. J. Algebra 524, 290–366 (2019)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Izhakian, Z., Margolis, S.W.: Semigroup identities in the monoid of two-by-two tropical matrices. Semigroup Forum 80, 191–218 (2010)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Johnson, M., Fenner, P.: Identities in unitriangular and gossip monoids. Semigroup Forum 98, 338–354 (2019)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Johnson, M., Tran, N.M.: Geometry and algorithms for upper triangular tropical matrix identities. J. Algebra 530, 470–507 (2019)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Johnson, M., Kambites, M.: Tropical representations and identities of plactic monoids. Trans. Am. Math. Soc. 374, 4423–4447 (2021)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Jackson, M., Volkov, M.V.: The algebra of adjacency patterns: Rees matrix semigroups with reversion. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. Lecture Notes in Computer Science, vol. 6300, pp. 414–443. Springer, Berlin (2010)

    Chapter  Google Scholar 

  25. 25.

    Lee, E.W.H.: Finite involution semigroups with infinite irredundant bases of identities. Forum Math. 28, 587–607 (2016)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Lee, E.W.H.: Finitely based finite involution semigroups with non-finitely based reducts. Quaest. Math. 39, 217–243 (2016)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Lee, E.W.H.: Equational theories of unstable involution semigroups. Electron. Res. Announc. Math. Sci. 24, 10–20 (2017)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Lee, E.W.H.: A sufficient condition for the absence of irredundant bases. Houston J. Math. 44, 399–411 (2018)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Lee, E.W.H.: Non-finitely based finite involution semigroups with finitely based semigroup reducts. Korean J. Math. 27, 53–62 (2019)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Lee, E.W.H.: Contributions to the theory of varieties of semigroups. D.Sc. Thesis, National Research University Higher School of Economics, Russia (2020)

  31. 31.

    Li, J.R., Luo, Y.F.: On the finite basis problem for the monoids of triangular boolean matrices. Algebra Univers. 65, 353–362 (2011)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Okniński, J.: Identities of the semigroup of upper triangular tropical matrices. Commun. Algebra 43, 4422–4426 (2015)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Perkins, P.: Bases for equational theories of semigroups. J. Algebra 11, 298–314 (1969)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Pachter, L., Sturmfels, B.: Tropical geometry of statistical models. Proc. Natl. Acad. Sci. USA 101, 16132–16137 (2004)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Simon, I.: Hierarchies of Events with Dot-depth One. PhD thesis, University of Waterloo (1972)

  36. 36.

    Simon, I.: On semigroups of matrices over the tropical semiring. RAIRO Theor. Inform. Appl. 28, 277–294 (1994)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Shneerson, L.M.: On the axiomatic rank of varieties generated by a semigroup or monoid with one defining relation. Semigroup Forum 39, 17–38 (1989)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Sapir, O.: Non-finitely based monoids. Semigroup Forum 90, 557–586 (2015)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Sapir, M.V.: Problems of Burnside type and the finite basis property in varieties of semigroups. Izv. Akad. Nauk SSSR Ser. Mat. 51, 319–340 (1987). (Russian)

  40. 40.

    Volkov, M.V.: The finite basis problem for finite semigroups. Sci. Math. Jpn. 53, 171–199 (2001)

    MathSciNet  MATH  Google Scholar 

  41. 41.

    Volkov, M.V.: Reflexive relations, extensive transformations and picewise testable languages of a given height. Int. J. Algebra Comput. 14, 817–827 (2004)

    Article  Google Scholar 

  42. 42.

    Volkov, M.V.: A nonfinitely based semigroup of triangular matrices. In: Romeo, P., Meakin, J., Rajan, A. (eds.) Semigroups, Algebras and Operator Theory, Springer Proceedings in Mathematics & Statistics, vol. 142, pp. 27–38. Springer, New Delhi (2015)

    Chapter  Google Scholar 

  43. 43.

    Volkov, M.V., Goldberg, I.A.: The finite basis problem for monoids of triangular boolean matrices. In: Algebraic Systems, Formal Languages, and Conventional and Unconventional Computation Theory, Research Institute for Mathematical Sciences, Kyoto University, 205–214 (2004)

  44. 44.

    Zhang, W.T., Ji, Y.D., Luo, Y.F.: The finite basis problem for infinite involution semigroups of triangular \(2 \times 2\) matrices. Semigroup Forum 94, 426–441 (2017)

    MathSciNet  Article  Google Scholar 

  45. 45.

    Zhang, W.T., Luo, Y.F., Wang, N.: Finite basis problem for involution monoids of unitriangular boolean matrices. Algebra Univers. 81, 7 (2020)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referee whose meticulous reading and insightful suggestions led to improvements in readability and simplification and generalization of some arguments in the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wen Ting Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by the National Natural Science Foundation of China (Nos. 11771191, 11401275, 11371177) and the Natural Science Foundation of Gansu Province (No. 20JR5RA275)

Presented by E. W. H. Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, B.B., Zhang, W.T. & Luo, Y.F. Equational theories of upper triangular tropical matrix semigroups. Algebra Univers. 82, 44 (2021). https://doi.org/10.1007/s00012-021-00738-1

Download citation

Mathematics Subject Classification

  • 20M07

Keywords

  • Tropical semiring
  • Matrix
  • Identity
  • Involution
  • Finite basis problem