## Abstract

In classical topology, it is proved that for a topological space *X*, every bounded Riesz map \(\varphi :C (X) \rightarrow {\mathbb {R}}\) is of the from \({\hat{x}}\) for a point \(x\in X\). In this paper, our main purpose is to prove a version of this result by lattice-valued maps. A ring representation of the from \(A\rightarrow {\mathbb {R}}\) is constructed. This representation is denoted by \(\widetilde{p_c}\) that is an onto *f*-ring homomorphism for every \(p\in \Sigma L\), where its index *c*, denotes a cozero lattice-valued map. Also, it is shown that for every Riesz map \(\phi :A\rightarrow {\mathbb {R}} \) and \(c\in F(A, L)\) with specific properties, there exists \(p\in \Sigma L\) such that \(\phi =\phi (1)\widetilde{p_c}\).

### Similar content being viewed by others

## References

Aliprantis, Charalambos D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics, 2nd ed. Providence, RI: American Mathematical Society (AMS), Mathematical surveys and monographs, no.

**105**, xii + 344 pp (2003)Banaschewski, B.: The real numbers in pointfree topology. Textos de Matemática. Série B,

**12**, Universidade de Coimbra, Departamento de Matemática, Coimbra, viii+94 pp (1997)Banaschewski, B.: On the function ring functor in pointfree topology. Appl. Categ. Struct.

**13**, 305–328 (2005)Bigard, A., Keimel, K., Wolfenstein, S.: Groups et Anneaux Réticulés, Series: Lecture Notes in Mathematics. Springer, Berlin Heidelberg (1997) (French)

Ebrahimi, M.M., Karimi Feizabadi, A., Mahmoudi, M.: Pointfree spectra of Riesz maps. Appl. Categ. Struct.

**12**, 379–409 (2004)Estaji, A.A., Karimi Feizabadi, A., Abedi, M.: Strongly fixed ideals in \( C(L)\) and compact frames. Arch. Math. (Brno)

**51**, 1–12 (2015)Estaji, A.A., Karimi Feizabadi, A., Abedi, M.: Zero set in pointfree topology and strongly \(z\)-ideals. Bull. Iranian Math. Soc.

**41**(5), 1071–1084 (2015)Fremlin, D.H.: Topological Riesz Spaces and Measure Theory. Cambridge University Press, New York (1974)

Freudenthal, H.: Teilweise geordnete Moduln. Nederl. Akad. Wetensch. Proc. Ser. A

**39**, 641–651 (1936)Kantorovich, L.V.: Sur les propriétés des espaces semi-ordonnés linéaires. C. R. Acad. Sci. Paris Ser. A-B

**202**, 813–816 (1936)Kantorovich, L.V.: Concerning the general theory of operations in partially ordered spaces. DAN SSSR

**1**, 271–274 (1936). (In Russian)Karimi Feizabadi, A., Ebrahimi, M.M.: Pointfree prime representation of real Riesz maps. Algebra Univers.

**54**, 291–299 (2005)Karimi Feizabadi, A., Estaji, A.A., Emamverdi, B.: \(\cal{R}{L}\)-valued \(f\)-rings homomorphisms and lattice-valued maps. Categories and General Algebraic Structures with Applications, Special issue on the Occasion of Banaschewskis 90th Birthday, vol.

**7**, 141–163 (2017)Gilman, L., Jerison, M.: Rings of Continuous Functions. Springer, Toronto, Lomdon, Newyork (1976)

Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

Picado, J., Pultr, A.: Frames and Locales: Topology without points. Springer, Basel (2012). (Frontiers in Mathematics)

Riesz, F.: Sur la décomposition des opérations linéaires. Atti. Congr. Internaz. Mat. Bologna

**3**, 143–148 (1930)

## Acknowledgements

The authors would like to thank the referee for careful reading and valuable comments and suggestions relating to this work. Also, we thank Prof. M. M. Ebrahimi for a thorough scrutiny of the first version of this paper, and for comments which have improved the exposition.

## Author information

### Authors and Affiliations

### Corresponding author

## Additional information

Presented by W.Wm. McGovern.

## Rights and permissions

## About this article

### Cite this article

Ali Estaji, A., Karimi Feizabadi, A. & Emamverdi, B. Representation of real Riesz maps on a strong *f*-ring by prime elements of a frame.
*Algebra Univers.* **79**, 14 (2018). https://doi.org/10.1007/s00012-018-0503-2

Received:

Accepted:

Published:

DOI: https://doi.org/10.1007/s00012-018-0503-2