Algebra universalis

, 79:14 | Cite as

Representation of real Riesz maps on a strong f-ring by prime elements of a frame

  • Akbar Ali Estaji
  • Abolghasem Karimi Feizabadi
  • Batool Emamverdi


In classical topology, it is proved that for a topological space X, every bounded Riesz map \(\varphi :C (X) \rightarrow {\mathbb {R}}\) is of the from \({\hat{x}}\) for a point \(x\in X\). In this paper, our main purpose is to prove a version of this result by lattice-valued maps. A ring representation of the from \(A\rightarrow {\mathbb {R}}\) is constructed. This representation is denoted by \(\widetilde{p_c}\) that is an onto f-ring homomorphism for every \(p\in \Sigma L\), where its index c, denotes a cozero lattice-valued map. Also, it is shown that for every Riesz map \(\phi :A\rightarrow {\mathbb {R}} \) and \(c\in F(A, L)\) with specific properties, there exists \(p\in \Sigma L\) such that \(\phi =\phi (1)\widetilde{p_c}\).


Frame Dedekind cut Strong f-ring Lattice-valued map 

Mathematics Subject Classification

06D22 54C30 13A15 



The authors would like to thank the referee for careful reading and valuable comments and suggestions relating to this work. Also, we thank Prof. M. M. Ebrahimi for a thorough scrutiny of the first version of this paper, and for comments which have improved the exposition.


  1. 1.
    Aliprantis, Charalambos D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics, 2nd ed. Providence, RI: American Mathematical Society (AMS), Mathematical surveys and monographs, no. 105, xii + 344 pp (2003)Google Scholar
  2. 2.
    Banaschewski, B.: The real numbers in pointfree topology. Textos de Matemática. Série B, 12, Universidade de Coimbra, Departamento de Matemática, Coimbra, viii+94 pp (1997)Google Scholar
  3. 3.
    Banaschewski, B.: On the function ring functor in pointfree topology. Appl. Categ. Struct. 13, 305–328 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bigard, A., Keimel, K., Wolfenstein, S.: Groups et Anneaux Réticulés, Series: Lecture Notes in Mathematics. Springer, Berlin Heidelberg (1997) (French)Google Scholar
  5. 5.
    Ebrahimi, M.M., Karimi Feizabadi, A., Mahmoudi, M.: Pointfree spectra of Riesz maps. Appl. Categ. Struct. 12, 379–409 (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Estaji, A.A., Karimi Feizabadi, A., Abedi, M.: Strongly fixed ideals in \( C(L)\) and compact frames. Arch. Math. (Brno) 51, 1–12 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Estaji, A.A., Karimi Feizabadi, A., Abedi, M.: Zero set in pointfree topology and strongly \(z\)-ideals. Bull. Iranian Math. Soc. 41(5), 1071–1084 (2015)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Fremlin, D.H.: Topological Riesz Spaces and Measure Theory. Cambridge University Press, New York (1974)CrossRefzbMATHGoogle Scholar
  9. 9.
    Freudenthal, H.: Teilweise geordnete Moduln. Nederl. Akad. Wetensch. Proc. Ser. A 39, 641–651 (1936)zbMATHGoogle Scholar
  10. 10.
    Kantorovich, L.V.: Sur les propriétés des espaces semi-ordonnés linéaires. C. R. Acad. Sci. Paris Ser. A-B 202, 813–816 (1936)zbMATHGoogle Scholar
  11. 11.
    Kantorovich, L.V.: Concerning the general theory of operations in partially ordered spaces. DAN SSSR 1, 271–274 (1936). (In Russian)Google Scholar
  12. 12.
    Karimi Feizabadi, A., Ebrahimi, M.M.: Pointfree prime representation of real Riesz maps. Algebra Univers. 54, 291–299 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Karimi Feizabadi, A., Estaji, A.A., Emamverdi, B.: \(\cal{R}{L}\)-valued \(f\)-rings homomorphisms and lattice-valued maps. Categories and General Algebraic Structures with Applications, Special issue on the Occasion of Banaschewskis 90th Birthday, vol. 7, 141–163 (2017)Google Scholar
  14. 14.
    Gilman, L., Jerison, M.: Rings of Continuous Functions. Springer, Toronto, Lomdon, Newyork (1976)Google Scholar
  15. 15.
    Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)zbMATHGoogle Scholar
  16. 16.
    Picado, J., Pultr, A.: Frames and Locales: Topology without points. Springer, Basel (2012). (Frontiers in Mathematics)CrossRefzbMATHGoogle Scholar
  17. 17.
    Riesz, F.: Sur la décomposition des opérations linéaires. Atti. Congr. Internaz. Mat. Bologna 3, 143–148 (1930)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Akbar Ali Estaji
    • 1
  • Abolghasem Karimi Feizabadi
    • 2
  • Batool Emamverdi
    • 1
  1. 1.Faculty of Mathematics and Computer SciencesHakim Sabzevari UniversitySabzevarIran
  2. 2.Department of Mathematics Gorgan BranchIslamic Azad UniversityGorganIran

Personalised recommendations