Skip to main content
Log in

Subcompletions of representable relation algebras

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

The variety of representable relation algebras is closed under canonical extensions but not closed under completions. What variety of relation algebras is generated by completions of representable relation algebras? Does it contain all relation algebras? It contains all representable finite relation algebras, and this paper shows that it contains many non-representable finite relation algebras as well. For example, every Monk algebra with six or more special elements (called “colors”) is a subalgebra of the completion of an atomic symmetric integral representable relation algebra whose finitely-generated subalgebras are finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alm, J.F., Manske, J.: Sum-free cyclic multi-bases and constructions of Ramsey algebras. Discrete Appl. Math. 180, 204–212 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alm, J.F., Maddux, R.D., Manske, J.: Chromatic graphs, Ramsey numbers, and the flexible atom conjecture. Electron. J. Comb. 15, 1–8 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Andréka, H., Maddux, R.D., Németi, I.: Splitting in relation algebras. Proc. Am. Math. Soc. 111, 1085–1093 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  5. Comer, S.D.: Color schemes forbidding monochrome triangles. In: Proceedings of the 14th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 231–236 (1983)

  6. Comer, S.D.: Combinatorial aspects of relations. Algebra Univ. 18, 77–94 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Greenwood, R.E., Gleason, A.M.: Combinatorial relations and chromatic graphs. Can. J. Math. 7, 1–7 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frias, M., Maddux, R.D.: Non-embeddable simple relation algebras. Algebra Univ. 38, 115–135 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gehrke, M., Harding, J., Venema, Y.: MacNeille completions and canonical extensions. Trans. Am. Math. Soc. 358, 573–590 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Henkin, L., Monk, J.D., Tarski, A.: Cylindric algebras. In: Part I. Studies in Logic and the Foundations of Mathematics, vol. 64. North-Holland, Amsterdam (1971)

  11. Henkin, L., Monk, J.D., Tarski, A.: Cylindric algebras. In: Part II. Studies in Logic and the Foundations of Mathematics, vol. 115. North-Holland, Amsterdam (1985)

  12. Hirsch, R.: Completely representable relation algebras. Bull. IGPL 3, 77–91 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hirsch, R., Hodkinson, I.: Complete representations in algebraic logic. J. Symb. Log. 62, 816–847 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hirsch, R., Hodkinson, I.: Relation algebras by games. In: Studies in Logic and the Foundations of Mathematics, vol. 147. North-Holland, Amsterdam (2002)

  15. Hirsch, R., Hodkinson, I.: Strongly representable atom structures of relation algebras. Proc. Am. Math. Soc. 130, 1819–1831 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hirsch, R., Hodkinson, I.: Strongly representable atom structures of cylindric algebras. J. Symb. Log. 74, 811–828 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hirsch, R., Hodkinson, I., Maddux, R.D.: Relation algebra reducts of cylindric algebras and an application to proof theory. J. Symb. Log. 67, 197–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hodkinson, I.: Atom structures of cylindric algebras and relation algebras. Ann. Pure Appl. Log. 89, 117–148 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hodkinson, I., Venema, Y.: Canonical varieties with no canonical axiomatisation. Trans. Am. Math. Soc. 357, 4579–4605 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jónsson, B.: Representation of modular lattices and of relation algebras. Trans. Am. Math. Soc. 92, 449–464 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jónsson, B., Tarski, A.: Boolean algebras with operators. I. Am. J. Math. 73, 891–939 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jónsson, B., Tarski, A.: Boolean algebras with operators. II. Am. J. Math. 74, 127–162 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kalbfleisch, J.G., Stanton, R.G.: On the maximal triangle-free edge-chromatic graphs in three colors. J. Comb. Theory 5, 9–20 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kowalski, T.: Representability of Ramsey relation algebras. Algebra Univ. 74, 265–275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kramer, R.L., Maddux, R.D.: Equations not preserved by complete extensions. Algebra Univ. 15, 86–89 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lyndon, R.C.: The representation of relational algebras. Ann. Math. 2(51), 707–729 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lyndon, R.C.: The representation of relation algebras. II. Ann. Math. 2(63), 294–307 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  28. Maddux, R.D.: A sequent calculus for relation algebras. Ann. Pure Appl. Log. 25, 73–101 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Maddux, R.D.: Some varieties containing relation algebras. Trans. Am. Math. Soc. 272, 501–526 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Maddux, R.D.: Topics in relation algebras. PhD thesis, University of California Berkeley (1978)

  31. Maddux, R.D.: Finite integral relation algebras. In: Charleston, S.C. (ed.) Universal Algebra and Lattice Theory, pp. 175–197. Springer, Berlin (1985)

    Chapter  Google Scholar 

  32. Maddux, R.D.: Nonfinite axiomatizability results for cylindric and relation algebras. J. Symb. Log. 54, 951–974 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maddux, R.D.: Relation algebras. In: Studies in Logic and the Foundations of Mathematics, vol. 150. Elsevier, Amsterdam (2006)

  34. McKenzie, R.N.: The representation of relation algebras. PhD thesis, University of Colorado (1966)

  35. Monk, J.D.: On representable relation algebras. Mich. Math. J. 11, 207–210 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  36. Monk, J.D.: Nonfinitizability of classes of representable cylindric algebras. J. Symb. Log. 34, 331–343 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  37. Monk, J.D.: Completions of Boolean algebras with operators. Math. Nachr. 46, 47–55 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sikorski, R.: Boolean algebras, 3rd edn. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 25. Springer, New York (1969)

  39. Tarski, A.: Contributions to the theory of models. III. Nederl. Akad. Wetensch. Proc. Ser. A. 58, 56–64 (1955) (Indagationes Math. 17, 56–64 (1955))

Download references

Acknowledgements

The most direct inspiration for this work is [15]; see also [12, 13, 16, 19], and especially [14]. The method used in a proof of representability in [15] was embodied in the notion of flexible trio. A modification of a construction from [15] causes the finitely-generated subalgebras to be finite. Suggestions for the form and content of the Introduction came from the referee and the editors, to whom I express my thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Maddux.

Additional information

In memoriam, Bjarni Jónsson.

This article is part of the topical collection “In memory of Bjarni Jónsson” edited by J.B. Nation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddux, R.D. Subcompletions of representable relation algebras. Algebra Univers. 79, 20 (2018). https://doi.org/10.1007/s00012-018-0493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-018-0493-0

Mathematics Subject Classification

Keywords

Navigation