Advertisement

Algebra universalis

, 79:20 | Cite as

Subcompletions of representable relation algebras

  • Roger D. Maddux
Article
  • 22 Downloads
Part of the following topical collections:
  1. In memory of Bjarni Jónsson

Abstract

The variety of representable relation algebras is closed under canonical extensions but not closed under completions. What variety of relation algebras is generated by completions of representable relation algebras? Does it contain all relation algebras? It contains all representable finite relation algebras, and this paper shows that it contains many non-representable finite relation algebras as well. For example, every Monk algebra with six or more special elements (called “colors”) is a subalgebra of the completion of an atomic symmetric integral representable relation algebra whose finitely-generated subalgebras are finite.

Keywords

Relation algebra Representable relation algebra Monk algebra Completion Canonical extension Cylindric algebra 

Mathematics Subject Classification

03G15 

Notes

Acknowledgements

The most direct inspiration for this work is [15]; see also [12, 13, 16, 19], and especially [14]. The method used in a proof of representability in [15] was embodied in the notion of flexible trio. A modification of a construction from [15] causes the finitely-generated subalgebras to be finite. Suggestions for the form and content of the Introduction came from the referee and the editors, to whom I express my thanks.

References

  1. 1.
    Alm, J.F., Manske, J.: Sum-free cyclic multi-bases and constructions of Ramsey algebras. Discrete Appl. Math. 180, 204–212 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alm, J.F., Maddux, R.D., Manske, J.: Chromatic graphs, Ramsey numbers, and the flexible atom conjecture. Electron. J. Comb. 15, 1–8 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Andréka, H., Maddux, R.D., Németi, I.: Splitting in relation algebras. Proc. Am. Math. Soc. 111, 1085–1093 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)zbMATHGoogle Scholar
  5. 5.
    Comer, S.D.: Color schemes forbidding monochrome triangles. In: Proceedings of the 14th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 231–236 (1983)Google Scholar
  6. 6.
    Comer, S.D.: Combinatorial aspects of relations. Algebra Univ. 18, 77–94 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Greenwood, R.E., Gleason, A.M.: Combinatorial relations and chromatic graphs. Can. J. Math. 7, 1–7 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Frias, M., Maddux, R.D.: Non-embeddable simple relation algebras. Algebra Univ. 38, 115–135 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gehrke, M., Harding, J., Venema, Y.: MacNeille completions and canonical extensions. Trans. Am. Math. Soc. 358, 573–590 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Henkin, L., Monk, J.D., Tarski, A.: Cylindric algebras. In: Part I. Studies in Logic and the Foundations of Mathematics, vol. 64. North-Holland, Amsterdam (1971)Google Scholar
  11. 11.
    Henkin, L., Monk, J.D., Tarski, A.: Cylindric algebras. In: Part II. Studies in Logic and the Foundations of Mathematics, vol. 115. North-Holland, Amsterdam (1985)Google Scholar
  12. 12.
    Hirsch, R.: Completely representable relation algebras. Bull. IGPL 3, 77–91 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hirsch, R., Hodkinson, I.: Complete representations in algebraic logic. J. Symb. Log. 62, 816–847 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hirsch, R., Hodkinson, I.: Relation algebras by games. In: Studies in Logic and the Foundations of Mathematics, vol. 147. North-Holland, Amsterdam (2002)Google Scholar
  15. 15.
    Hirsch, R., Hodkinson, I.: Strongly representable atom structures of relation algebras. Proc. Am. Math. Soc. 130, 1819–1831 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hirsch, R., Hodkinson, I.: Strongly representable atom structures of cylindric algebras. J. Symb. Log. 74, 811–828 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hirsch, R., Hodkinson, I., Maddux, R.D.: Relation algebra reducts of cylindric algebras and an application to proof theory. J. Symb. Log. 67, 197–213 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hodkinson, I.: Atom structures of cylindric algebras and relation algebras. Ann. Pure Appl. Log. 89, 117–148 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hodkinson, I., Venema, Y.: Canonical varieties with no canonical axiomatisation. Trans. Am. Math. Soc. 357, 4579–4605 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jónsson, B.: Representation of modular lattices and of relation algebras. Trans. Am. Math. Soc. 92, 449–464 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jónsson, B., Tarski, A.: Boolean algebras with operators. I. Am. J. Math. 73, 891–939 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Jónsson, B., Tarski, A.: Boolean algebras with operators. II. Am. J. Math. 74, 127–162 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kalbfleisch, J.G., Stanton, R.G.: On the maximal triangle-free edge-chromatic graphs in three colors. J. Comb. Theory 5, 9–20 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kowalski, T.: Representability of Ramsey relation algebras. Algebra Univ. 74, 265–275 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kramer, R.L., Maddux, R.D.: Equations not preserved by complete extensions. Algebra Univ. 15, 86–89 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lyndon, R.C.: The representation of relational algebras. Ann. Math. 2(51), 707–729 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lyndon, R.C.: The representation of relation algebras. II. Ann. Math. 2(63), 294–307 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Maddux, R.D.: A sequent calculus for relation algebras. Ann. Pure Appl. Log. 25, 73–101 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Maddux, R.D.: Some varieties containing relation algebras. Trans. Am. Math. Soc. 272, 501–526 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Maddux, R.D.: Topics in relation algebras. PhD thesis, University of California Berkeley (1978)Google Scholar
  31. 31.
    Maddux, R.D.: Finite integral relation algebras. In: Charleston, S.C. (ed.) Universal Algebra and Lattice Theory, pp. 175–197. Springer, Berlin (1985)CrossRefGoogle Scholar
  32. 32.
    Maddux, R.D.: Nonfinite axiomatizability results for cylindric and relation algebras. J. Symb. Log. 54, 951–974 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Maddux, R.D.: Relation algebras. In: Studies in Logic and the Foundations of Mathematics, vol. 150. Elsevier, Amsterdam (2006)Google Scholar
  34. 34.
    McKenzie, R.N.: The representation of relation algebras. PhD thesis, University of Colorado (1966)Google Scholar
  35. 35.
    Monk, J.D.: On representable relation algebras. Mich. Math. J. 11, 207–210 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Monk, J.D.: Nonfinitizability of classes of representable cylindric algebras. J. Symb. Log. 34, 331–343 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Monk, J.D.: Completions of Boolean algebras with operators. Math. Nachr. 46, 47–55 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sikorski, R.: Boolean algebras, 3rd edn. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 25. Springer, New York (1969)Google Scholar
  39. 39.
    Tarski, A.: Contributions to the theory of models. III. Nederl. Akad. Wetensch. Proc. Ser. A. 58, 56–64 (1955) (Indagationes Math. 17, 56–64 (1955))Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsIowa State UniversityAmesUSA

Personalised recommendations