Algebra universalis

, 79:8 | Cite as

Monoids of non-halting programs with tests

  • Gayatri Panicker
  • K. V. Krishna
  • Purandar Bhaduri
Article
  • 10 Downloads

Abstract

In order to study the axiomatization of the if-then-else construct over possibly non-halting programs and tests, the notion of C-sets was introduced in the literature by considering the tests from an abstract C-algebra. This paper extends the notion of C-sets to C-monoids which include the composition of programs as well as composition of programs with tests. For the class of C-monoids where the C-algebras are adas a canonical representation in terms of functional C-monoids is obtained.

Keywords

Axiomatization C-algebra Non-halting programs If-then-else 

Mathematics Subject Classification

08A70 03G25 68N15 

Notes

Acknowledgements

We are thankful to the referee for providing insightful comments, which have improved the presentation of the paper.

References

  1. 1.
    Bergman, G.M.: Actions of Boolean rings on sets. Algebra Universalis 28, 153–187 (1991)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bloom, S.L., Ésik, Z., Manes, E.G.: A Cayley theorem for Boolean algebras. Am. Math. Mon. 97, 831–833 (1990)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bloom, S.L., Tindell, R.: Varieties of “if-then-else”. SIAM J. Comput. 12, 677–707 (1983)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bochvar, D.A.: Ob odnom tréhznacnom isčislenii i égo priménénii k analiza paradoksov klassičéskogo rǎssirénnogo funkcional’nogo isčisléniá (in Russian). matématičeskij sbornik, 4: 287–308 (1939). Translated to English by M. Bergmann, “On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus”. History and Philosophy of Logic 2, 87–112 (1981)Google Scholar
  5. 5.
    Desharnais, J., Jipsen, P., Struth, G.: Domain and antidomain semigroups. In: Relations and Kleene Algebra in Computer Science. Lecture Notes in Computer Science vol. 5827, pp. 73–87. Springer, Berlin (2009)Google Scholar
  6. 6.
    Guessarian, I., Meseguer, J.: On the axiomatization of “if-then-else”. SIAM J. Comput. 16, 332–357 (1987)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Guzmán, F., Squier, C.C.: The algebra of conditional logic. Algebra Universalis 27, 88–110 (1990)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Heyting, A.: Die formalen regeln der intuitionistischen logik, sitzungsberichte der preuszischen akademie der wissenschaften, physikalischmathematische klasse (1930), 42–56 57–71 158–169 in three parts. Sitzungsber. preuss. Akad. Wiss 42, 158–169 (1934)Google Scholar
  9. 9.
    Igarashi, S.: Semantics of ALGOL-like statements. In: Symposium on Semantics of Algorithmic Languages, pp. 117–177. Springer (1971)Google Scholar
  10. 10.
    Jackson, M., Stokes, T.: Agreeable semigroups. J. Algebra 266, 393–417 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Jackson, M., Stokes, T.: Semigroups with if-then-else and halting programs. Int. J. Algebra Comput. 19, 937–961 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Jackson, M., Stokes, T.: Monoids with tests and the algebra of possibly non-halting programs. J. Log. Algebraic Methods Program. 84, 259–275 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kennison, J.F.: Triples and compact sheaf representation. J. Pure Appl. Algebra 20, 13–38 (1981)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kleene, S.: On notation for ordinal numbers. J. Symb. Log. 3, 150–155 (1938)CrossRefMATHGoogle Scholar
  15. 15.
    Lukasiewicz, J.: On three-valued logic. Ruch Filozoficzny 5 (1920). English translation in Borkowski, L.(ed.) 1970. Jan Lukasiewicz: Selected Works (1920)Google Scholar
  16. 16.
    Manes, E.G.: Adas and the equational theory of if-then-else. Algebra Universalis 30, 373–394 (1993)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Manes, E.G.: A transformational characterization of if-then-else. Theor. Comput. Sci. 71, 413–417 (1990)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    McCarthy, J.: A basis for a mathematical theory of computation. In: Computer Programming and Formal Systems, pp. 33–70. North-Holland, Amsterdam (1963)Google Scholar
  19. 19.
    Mekler, A.H., Nelson, E.M.: Equational bases for if-then-else. SIAM J. Comput. 16, 465–485 (1987)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Panicker, G., Krishna, K.V., Bhaduri, P.: Axiomatization of if-then-else over possibly non-halting programs and tests. Int. J. Algebra Comput. 27, 273–297 (2017)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Pigozzi, D.: Equality-test and if-then-else algebras: axiomatization and specification. SIAM J. Comput. 20, 766–805 (1991)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Sethi, R.: Conditional expressions with equality tests. J. ACM 25, 667–674 (1978)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Stokes, T.: Sets with \(B\)-action and linear algebra. Algebra Universalis 39, 31–43 (1998)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Stokes, T.: Comparison semigroups and algebras of transformations. Semigroup Forum 81, 325–334 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gayatri Panicker
    • 1
  • K. V. Krishna
    • 1
  • Purandar Bhaduri
    • 2
  1. 1.Department of MathematicsIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Department of Computer Science and EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations