Abstract
Normal categories are pointed categorical counterparts of 0-regular varieties, i.e., varieties where each congruence is uniquely determined by the equivalence class of a fixed constant 0. In this paper, we give a new axiomatic approach to normal categories, which uses self-dual axioms on a functor defined using subobjects of objects in the category. We also show that a similar approach can be developed for 0-regular varieties, if we replace subobjects with subsets of algebras containing 0.
This is a preview of subscription content, access via your institution.
References
Agliano P., Ursini A.: On subtractive varieties II: general properties. Algebra Universalis 36, 222–259 (1996)
Agliano P., Ursini A.: On subtractive varieties III: from ideals to congruences. Algebra Universalis 37, 296–333 (1997)
Agliano P., Ursini A.: On subtractive varieties IV: definability of principal ideals. Algebra Universalis 38, 355–389 (1997)
Barr, M., Grillet, P.A., van Osdol, D.H.: Exact Categories and Categories of Sheaves. Lecture Notes in Mathematics, vol. 236. Springer-Verlag (1971)
Bénabou, J.: Distributors at Work. Lecture Notes by Thomas Streicher (2000) http://www.mathematik.tu-darmstadt.de/\%7Estreicher/FIBR/DiWo.pdf
Borceux, F., Bourn, D.: Mal’cev, Protomodular, Homological and Semi-Abelian Categories. Mathematics and its Applications, vol. 566. Kluwer (2004)
Bourn, D.: Normalization equivalence, kernel equivalence and affine categories. Lecture Notes in Mathematics, vol. 1488, pp. 43–62. Springer-Verlag (1991)
Bourn D.: \({3\times3}\) lemma and protomodularity. J. Algebra 236, 778–795 (2001)
Brümmer G.: Topological categories. Topology Appl. 18, 27–41 (1984)
Buchsbaum D.: Exact categories and duality. Trans. Amer. Math. Soc. 80, 1–34 (1955)
Dikranjan, D., Tholen, W.: Categorical Structure of Closure Operators. Mathematics and its Applications, vol. 346. Kluwer (1995)
Fichtner K.: Varieties of universal algebras with ideals. Mat. Sb. N. S. 75((117), 445–453 (1968)
Gran M., Everaert T.: Monotone-light factorisation systems and torsion theories. Bull. Sci. Math. 137, 996–1006 (2013)
Gran M., Janelidze Z.: Star-regularity and regular completions. J. Pure Appl. Algebra 218, 1771–1782 (2014)
Gran M., Janelidze Z., Rodelo D., Ursini A.: Symmetry of regular diamonds, the Goursat property, and subtractivity. Theory Appl. Categ. 27, 80–96 (2012)
Gran M., Janelidze Z., Ursini A.: A good theory of ideals in regular multi-pointed categories. J. Pure Appl. Algebra 216, 1905–1919 (2012)
Grandis, M.: Homological Algebra: The Interplay of Homology with Distributive Lattices and Orthodox Semigroups. World Scientific Publishing Co. (2012)
Grandis, M.: Homological Algebra In Strongly Non-Abelian Settings. World Scientific Publishing Co. (2013)
Grätzer G.: Two Mal’cev-type theorems in universal algebra. J. Combin. Theory 8, 334–342 (1970)
Grothendieck A.: Sur quelques points d’alg‘ebre homologique. Tohoku Math. J. 9, 119–221 (1957)
Grothendieck, A.: Technique de descente et théorèmes d’existence en géométrie algébrique, I. Généralités. Descente par morphismes fidélement plats. Sémin. Bourbaki 190, 299–327 (1959)
Grothendieck, A.: Catégories fibrées et descente, Exposé VI. In: Revêtements Etales et Groupe Fondamental (SGA1). Lecture Notes in Mathematics, vol. 224, 145–194. Springer (1971)
Gumm H.P., Ursini A.: Ideals in universal algebra. Algebra Universalis 19, 45–54 (1984)
Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Foundations of Mathematics, vol. 141. Elsevier (1999)
Janelidze G., Márki L., Tholen W.: Semi-abelian categories. J. Pure Appl. Algebra 168, 367–386 (2002)
Janelidze G., Márki L., Tholen W., Ursini A.: Ideal determined categories. Cah. Topol. Géom. Différ. Catég. 51, 113–124 (2010)
Janelidze G., Márki L., Ursini A.: Ideals and clots in universal algebra and in semi-abelian categories. J. Algebra 307, 191–208 (2007)
Janelidze Z.: Characterization of pointed varieties of universal algebras with normal projections. Theory Appl. Categ. 11, 212–214 (2003)
Janelidze Z.: Subtractive categories. Appl. Categ. Structures 13, 343–350 (2005)
Janelidze Z.: The pointed subobject functor, \({3\times3}\) lemmas, and subtractivity of spans. Theory Appl. Categ. 23, 221–242 (2010)
Janelidze Z.: An axiomatic survey of diagram lemmas for non-abelian group-like structures. J. Algebra 370, 387–401 (2012)
Janelidze Z.: On the form of subobjects in semi-abelian and regular protomodular categories. Appl. Categ. Structures 22, 755–766 (2014)
Janelidze Z., Weighill T.: Duality in non-abelian algebra I. From cover relations to Grandis ex2-categories. Theory Appl. Categ. 29, 315–331 (2014)
Janelidze Z., Weighill T.: Duality in non-abelian algebra II. From Isbell bicategories to Grandis exact categories. J. Homotopy Relat. Struct. 11, 553–570 (2016)
Mac Lane S.: Duality for groups. Bull. Amer. Math. Soc. 56, 485–516 (1950)
Mac Lane S.: Homology. Springer-Verlag (1963)
McConnell N.R., Stokes T.: Radicals of 0-regular algebras. Acta Math. Hungar. 113, 19–37 (2006)
Martins-Ferreira N., Montoli A., Sobral M.: Semidirect products and split short five lemma in normal categories. Appl. Categ. Structures 22, 687–697 (2014)
Słomiński, J.: On the determining of the form of congruences in abstract algebras with equationally definable constant elements. Fund. Math. 48, 325–341 (1959/60)
Terlikowska-Osłokwska B.: Category with a self-dual set of axioms. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25, 1207–1214 (1977)
Ursini A.: Sulle varietà di algebre con una buona teoria degli ideali. Boll. Un. Mat. Ital. 6, 90–95 (1972)
Ursini A.: Osservazioni sulla varietá BIT. Boll. Un. Mat. Ital. 8, 205–211 (1973)
Ursini A.: On subtractive varieties, I. Algebra Universalis 31, 204–222 (1994)
Ursini A.: On subtractive varieties, V: congruence modularity and the commutators. Algebra Universalis 43, 51–78 (2000)
Ursini A.: Normal subalgebras, I. Appl. Categ. Structures 21, 209–236 (2013)
Wyler O.: Weakly exact categories. Arch. Math. (Basel) 17, 9–19 (1966)
Wyler O.: Top categories and categorical topology. General Topology and Appl. 1, 17–28 (1971)
Wyler O.: The Zassenhaus lemma for categories. Arch. Math. (Basel) 22, 561–569 (1971)
Author information
Authors and Affiliations
Corresponding author
Additional information
Presented by J. Adamek.
Supported by the South African National Research Foundation (both authors) and the MIH Media Lab at Stellenbosch University (second author).
Rights and permissions
About this article
Cite this article
Janelidze, Z., Weighill, T. Duality in non-abelian algebra III. Normal categories and 0-regular varieties. Algebra Univers. 77, 1–28 (2017). https://doi.org/10.1007/s00012-017-0422-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00012-017-0422-7
2010 Mathematics Subject Classification
Key words and phrases
- abelian category
- axiomatic duality
- exact form
- Grothendieck fibration
- homological category
- form of subobjects
- ideal-determined variety
- normal category
- 0-permutable variety
- protomodular category
- 0-regular variety
- semi-abelian category
- subobject fibration
- subtractive category
- subtractive variety
- universalizer
- variety with ideals