Abstract
We study completions of Archimedean vector lattices relative to any nonempty set of positively homogeneous functions on finite-dimensional real vector spaces. Examples of such completions include square mean closed and geometric mean closed vector lattices, amongst others. These functional completions also lead to a universal definition of the complexification of any Archimedean vector lattice and a theory of tensor products and powers of complex vector lattices in a companion paper.
Similar content being viewed by others
References
Aliprantis C.D., Burkinshaw O.: Positive Operators. Academic Press, Orlando (1985)
Aliprantis C. D., Langford E.: Order completions of Archimedean Riesz spaces and l-groups. Algebra Universalis 19, 151–159 (1984)
Azouzi, Y.: Square Mean Closed Real Riesz Spaces. PhD thesis, Université Tunis-El Manar (2008)
Azzouzi Y., Boulabiar K., Buskes G.: The de Schipper formula and squares of Riesz spaces. Indag. Math. (N.S.) 17, 479–496 (2006)
Ball R.N., Hager A.W.: Algebraic extensions of an Archimedean lattice-ordered group II. J. Pure Appl. Algebra 138, 197–204 (1999)
Beukers F., Huijsmans C., de Pagter B: Unital embedding and complexification of f-algebras. Math Z. 183, 131–144 (1983)
Blumenson L.E.: A derivation of n-dimensional spherical coordinates. Amer. Math. Monthly 67, 63–66 (1960)
Buskes G., Schwanke C.: Complex vector lattices via functional completions. J. Math. Anal. Appl. 434, 1762–1778 (2016)
Buskes, G., de Pagter, B., van Rooij, A.: Functional calculus on Riesz spaces. Indag. Math. (N.S.) 2, 423–436 (1991)
Buskes G., van Rooij A.: Small Riesz spaces. Math. Proc. Cambridge Philos. Soc. 3, 523–536 (1989)
Chen, Z.L.: Math Review. MR2320110
van Haandel, M.: Completions in Riesz Space Theory. PhD thesis, Katholieke Universiteit Nijmegen (1993)
Hager A.W.: Some remarks on the tensor product of function rings. Math. Z. 92, 210–224 (1966)
de Jonge E., van Rooij A. C. M.: Introduction to Riesz spaces. Mathematisch Centrum, Amsterdam (1977)
Kusraev A.G.: Functional calculus and Minkowski duality on vector lattices. Vladikavkaz. Math. Zh. 2, 31–42 (2009)
Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces, vol I, North-Holland, Amsterdam (1971)
Mittelmeyer, G., Wolff, M.: Über den Absolutbetrag auf komplexen Vektorverbänden. Math. Z. 137, 87–92 (1974) (German)
Neuman E., Páles Z.: On comparison of Stolarsky and Gini means. Math. Z. 278, 274–284 (2003)
Phelps R.: Convex Functions, Monotone Operators and Differentiability. Springer, Berlin (1993)
Quinn J.: Intermediate Riesz spaces. Pacific J. Math. 56, 225–263 (1975)
Spivak, M.: Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus. W. A. Benjamin, Inc., New York (1965)
Stolarsky K.B.: Generalizations of the logarithmic mean. Math. Mag. 48, 87–92 (1975)
Triki A.: On algebra homomorphisms in complex almost f-algebras. Comment. Math. Univ. Carolin. 43, 23–31 (2002)
Veksler, A. I.: A new construction of the Dedekind completion of vector lattices and l-groups with division. Siberian Math. 10, 891–896 (1969) (English translation)
Zaanen A.C.: Riesz Spaces II. North-Holland, Amsterdam (1983)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Buskes, G., Schwanke, C. Functional completions of Archimedean vector lattices. Algebra Univers. 76, 53–69 (2016). https://doi.org/10.1007/s00012-016-0386-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00012-016-0386-z