Skip to main content
Log in

Functional completions of Archimedean vector lattices

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

We study completions of Archimedean vector lattices relative to any nonempty set of positively homogeneous functions on finite-dimensional real vector spaces. Examples of such completions include square mean closed and geometric mean closed vector lattices, amongst others. These functional completions also lead to a universal definition of the complexification of any Archimedean vector lattice and a theory of tensor products and powers of complex vector lattices in a companion paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliprantis C.D., Burkinshaw O.: Positive Operators. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  2. Aliprantis C. D., Langford E.: Order completions of Archimedean Riesz spaces and l-groups. Algebra Universalis 19, 151–159 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Azouzi, Y.: Square Mean Closed Real Riesz Spaces. PhD thesis, Université Tunis-El Manar (2008)

  4. Azzouzi Y., Boulabiar K., Buskes G.: The de Schipper formula and squares of Riesz spaces. Indag. Math. (N.S.) 17, 479–496 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball R.N., Hager A.W.: Algebraic extensions of an Archimedean lattice-ordered group II. J. Pure Appl. Algebra 138, 197–204 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beukers F., Huijsmans C., de Pagter B: Unital embedding and complexification of f-algebras. Math Z. 183, 131–144 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blumenson L.E.: A derivation of n-dimensional spherical coordinates. Amer. Math. Monthly 67, 63–66 (1960)

    Article  MathSciNet  Google Scholar 

  8. Buskes G., Schwanke C.: Complex vector lattices via functional completions. J. Math. Anal. Appl. 434, 1762–1778 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buskes, G., de Pagter, B., van Rooij, A.: Functional calculus on Riesz spaces. Indag. Math. (N.S.) 2, 423–436 (1991)

  10. Buskes G., van Rooij A.: Small Riesz spaces. Math. Proc. Cambridge Philos. Soc. 3, 523–536 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Z.L.: Math Review. MR2320110

  12. van Haandel, M.: Completions in Riesz Space Theory. PhD thesis, Katholieke Universiteit Nijmegen (1993)

  13. Hager A.W.: Some remarks on the tensor product of function rings. Math. Z. 92, 210–224 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Jonge E., van Rooij A. C. M.: Introduction to Riesz spaces. Mathematisch Centrum, Amsterdam (1977)

    MATH  Google Scholar 

  15. Kusraev A.G.: Functional calculus and Minkowski duality on vector lattices. Vladikavkaz. Math. Zh. 2, 31–42 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces, vol I, North-Holland, Amsterdam (1971)

  17. Mittelmeyer, G., Wolff, M.: Über den Absolutbetrag auf komplexen Vektorverbänden. Math. Z. 137, 87–92 (1974) (German)

  18. Neuman E., Páles Z.: On comparison of Stolarsky and Gini means. Math. Z. 278, 274–284 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Phelps R.: Convex Functions, Monotone Operators and Differentiability. Springer, Berlin (1993)

    MATH  Google Scholar 

  20. Quinn J.: Intermediate Riesz spaces. Pacific J. Math. 56, 225–263 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Spivak, M.: Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus. W. A. Benjamin, Inc., New York (1965)

  22. Stolarsky K.B.: Generalizations of the logarithmic mean. Math. Mag. 48, 87–92 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Triki A.: On algebra homomorphisms in complex almost f-algebras. Comment. Math. Univ. Carolin. 43, 23–31 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Veksler, A. I.: A new construction of the Dedekind completion of vector lattices and l-groups with division. Siberian Math. 10, 891–896 (1969) (English translation)

  25. Zaanen A.C.: Riesz Spaces II. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Buskes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buskes, G., Schwanke, C. Functional completions of Archimedean vector lattices. Algebra Univers. 76, 53–69 (2016). https://doi.org/10.1007/s00012-016-0386-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-016-0386-z

2010 Mathematics Subject Classification

Keywords and phrases

Navigation