Skip to main content
Log in

Generating all finite modular lattices of a given size

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

Modular lattices, introduced by R. Dedekind, are an important subvariety of lattices that includes all distributive lattices. Heitzig and Reinhold [8] developed an algorithm to enumerate, up to isomorphism, all finite lattices up to size 18. Here we adapt and improve this algorithm to construct and count modular lattices up to size 24, semimodular lattices up to size 22, and lattices of size 19. We also show that 2n−3 is a lower bound for the number of nonisomorphic modular lattices of size n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belohlavek R., Vychodil V.: Residuated lattices of size ≤ 12. Order 27, 147–161 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benson D. J., Conway J. H.: Diagrams for modular lattices. J. Pure Appl. Algebra 37, 111–116 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dedekind R.: Über die von drei Moduln erzeugte Dualgruppe. Math. Ann. 53, 371–403 (1900)

    Article  MathSciNet  MATH  Google Scholar 

  4. Erné, M., Heitzig, J., Reinhold, J.: On the number of distributive lattices. Electron. J. Combin. 9, 23 pp (2002)

  5. Faigle U., Herrmann C.: Projective geometry on partially ordered sets. Trans. Amer. Math. Soc. 266, 267–291 (1981)

    Article  MathSciNet  Google Scholar 

  6. Faradzhev, I. A.: Constructive enumeration of combinatorial objects. Problèmes combinatoires et théorie des graphes, Internat. Colloq. CNRS, 260, Paris, 131–135 (1978)

  7. Grätzer, G.: General Lattice Theory. 2nd edn. Birkhäuser (1998)

  8. Heitzig J., Reinhold J.: Counting finite lattices. Algebra Universalis 48, 43–53 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kleitman D. J., Winston K. J.: The asymptotic number of lattices. Ann. Discrete Math. 6, 243–249 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. McKay B. D.: Isomorph-free exhaustive generation. J. Algorithms 26, 306–324 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. McKay, B. D., Piperno, A.: Practical graph isomorphism, II. http://arxiv.org/abs/1301.1493, 22 pp (2013)

  12. Read R. C.: Every one a winner, or how to avoid isomorphism search when cataloguing combinatorial configurations. Ann. Discrete Math. 2, 107–120 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jipsen.

Additional information

Presented by R. Quackenbush.

Dedicated to Brian Davey on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jipsen, P., Lawless, N. Generating all finite modular lattices of a given size. Algebra Univers. 74, 253–264 (2015). https://doi.org/10.1007/s00012-015-0348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-015-0348-x

2010 Mathematics Subject Classification

Key words and phrases

Navigation