Abstract
Modular lattices, introduced by R. Dedekind, are an important subvariety of lattices that includes all distributive lattices. Heitzig and Reinhold [8] developed an algorithm to enumerate, up to isomorphism, all finite lattices up to size 18. Here we adapt and improve this algorithm to construct and count modular lattices up to size 24, semimodular lattices up to size 22, and lattices of size 19. We also show that 2n−3 is a lower bound for the number of nonisomorphic modular lattices of size n.
This is a preview of subscription content, access via your institution.
References
Belohlavek R., Vychodil V.: Residuated lattices of size ≤ 12. Order 27, 147–161 (2010)
Benson D. J., Conway J. H.: Diagrams for modular lattices. J. Pure Appl. Algebra 37, 111–116 (1985)
Dedekind R.: Über die von drei Moduln erzeugte Dualgruppe. Math. Ann. 53, 371–403 (1900)
Erné, M., Heitzig, J., Reinhold, J.: On the number of distributive lattices. Electron. J. Combin. 9, 23 pp (2002)
Faigle U., Herrmann C.: Projective geometry on partially ordered sets. Trans. Amer. Math. Soc. 266, 267–291 (1981)
Faradzhev, I. A.: Constructive enumeration of combinatorial objects. Problèmes combinatoires et théorie des graphes, Internat. Colloq. CNRS, 260, Paris, 131–135 (1978)
Grätzer, G.: General Lattice Theory. 2nd edn. Birkhäuser (1998)
Heitzig J., Reinhold J.: Counting finite lattices. Algebra Universalis 48, 43–53 (2002)
Kleitman D. J., Winston K. J.: The asymptotic number of lattices. Ann. Discrete Math. 6, 243–249 (1980)
McKay B. D.: Isomorph-free exhaustive generation. J. Algorithms 26, 306–324 (1998)
McKay, B. D., Piperno, A.: Practical graph isomorphism, II. http://arxiv.org/abs/1301.1493, 22 pp (2013)
Read R. C.: Every one a winner, or how to avoid isomorphism search when cataloguing combinatorial configurations. Ann. Discrete Math. 2, 107–120 (1978)
Author information
Authors and Affiliations
Corresponding author
Additional information
Presented by R. Quackenbush.
Dedicated to Brian Davey on the occasion of his 65th birthday
Rights and permissions
About this article
Cite this article
Jipsen, P., Lawless, N. Generating all finite modular lattices of a given size. Algebra Univers. 74, 253–264 (2015). https://doi.org/10.1007/s00012-015-0348-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00012-015-0348-x