Skip to main content
Log in

On universal categories of coalgebras

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

A category \({\mathcal{K}}\) is called universal if for every accessible functor F : Set → Set the category of all F-coalgebras and the category of all F-algebras can be fully embedded into \({\mathcal{K}}\). We prove that for a functor G preserving intersections, the category Coalg G of all G-coalgebras is universal unless the functor G is linear, that is, of the form GX = X × A + B for some fixed sets A and B. Other types of universality are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Porst, H.E.: From varieties of algebras to covarieties of coalgebras. Electronic Notes in Theoretical Computer Science 233 (2001)

  2. Adámek J., Porst H.E.: On tree coalgebras and coalgebra presentations. Theoret. Comput. Sci. 311, 257–283 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adámek J., Rosický J.: Locally Presentable and Accessible Categories. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  4. Adámek J., Trnková V.: Automata and Algebras in Categories. Kluwer, Dordrecht (1989)

    Google Scholar 

  5. Adams M.E., Dziobiak W.: Endomorphisms of monadic Boolean algebras. Algebra Universalis 57, 131–142 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Birkhoff G.: On groups of automorphisms. Revista Unión Math. Argentina 11, 155–157 (1946) (Spanish)

    MATH  MathSciNet  Google Scholar 

  7. Dow, A., Hart, K.P.: The Čech-Stone compactification of \({\mathbb{N}\, {\rm and}\,\mathbb{R}}\). In: Hart, K.P., Nagata, J., Vaughan, J.P. (eds.) Encyclopedia of General Topology, pp. 213–217. Elsevier (2004)

  8. Freyd P.J.: Concreteness. J. Pure Appl. Algebra 3, 171–191 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Frucht R.: Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compos. Math. 6, 239–250 (1938)

    MATH  MathSciNet  Google Scholar 

  10. deGroot J.: Groups represented by homeomorphism groups. Math. Ann. 138, 80–102 (1959)

    Article  MathSciNet  Google Scholar 

  11. Gumm H.-P.: Elements of general theory of coalgebras. LUATCS99, Rand Afrikaans University, Johannesburg (1999)

    Google Scholar 

  12. Gumm, H.-P.: From T-coalgebras to filter structures and transition systems. CALCO 2005, LNCS 3629 (1999)

  13. Gumm H.-P., Schröder T.: Types and coalgebraic structure. Algebra Universalis 53, 229–252 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hedrlín Z., Sichler J.: Any boundable binding category contains a proper class of mutually disjoint copies of itself. Algebra Universalis 1, 97–103 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  15. Isbell, J.R.: Subobjects, adequacy completeness and categories of algebras. Rozprawy Matematyczne 36 (1960)

  16. Kahawara Y., Mori M.: A small final coalgebra theorem. Theoret. Comput. Sci. 233, 129–145 (2000)

    Article  MathSciNet  Google Scholar 

  17. Katětov M.: A theorem on mappings. Comment. Math. Univ. Carolin. 8, 431–433 (1296)

    Google Scholar 

  18. Koubek V.: On categories into which each concrete category can be embedded. Cahiers Topologie Géom. Diff. 17, 33–57 (1976)

    MATH  MathSciNet  Google Scholar 

  19. Koubek V.: Full embeddability into categories of generalized algebras. Algebra Universalis 17, 1–20 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kučera L.: Every category is a factorization of a concrete one. J. Pure Appl. Algebra 1, 373–376 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  21. Marvan M.: On covarieties of coalgebras. Arch. Math. (Brno) 21, 51–64 (1985)

    MATH  MathSciNet  Google Scholar 

  22. Pultr A., Trnková V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  23. Rutten J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249, 3–80 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sabidussi G.: Graphs with given infinite groups. Monatsh. Math. 64, 64–67 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shelah S., Rudin M.E.: Unordered types of ultrafilters. Topology Proc. 3, 199–204 (1978)

    MathSciNet  Google Scholar 

  26. Székely Z.: Maximal clones of co-operations. Acta Sci. Math. (Szeged) 53, 43–50 (1989)

    MATH  MathSciNet  Google Scholar 

  27. Trnková V.: Universal categories. Comment. Math. Univ. Carolin. 7, 143–206 (1966)

    MATH  Google Scholar 

  28. Trnková V.: Some properties of set functors. Comment. Math. Univ. Carolin. 10, 323–352 (1969)

    MATH  Google Scholar 

  29. Trnková V.: On descriptive classification of set functors. Part I. Comment. Math. Univ. Carolin. 12, 143–174 (1971)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Sichler.

Additional information

Presented by J. Adámek.

The first author gratefully acknowledges the support of MSM 0021620839, a project of the Czech Ministry of Education. The second author gratefully acknowledges the support provided by the NSERC of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trnková, V., Sichler, J. On universal categories of coalgebras. Algebra Univers. 63, 243–260 (2010). https://doi.org/10.1007/s00012-010-0077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-010-0077-0

2000 Mathematics Subject Classification

Keywords and phrases

Navigation