Skip to main content
Log in

Characteristic triangles of closure operators with applications in general algebra

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

Our aim is to investigate groups and their weak congruence lattices in the abstract setting of lattices L with (local) closure operators C in the categorical sense, where L is regarded as a small category and C is a family of closure maps on the principal ideals of L. A useful tool for structural investigations of such “lattices with closure” is the so-called characteristic triangle, a certain substructure of the square L 2. For example, a purely order-theoretical investigation of the characteristic triangle shows that the Dedekind groups (alias Hamiltonian groups) are precisely those with modular weak congruence lattices; similar results are obtained for other classes of algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek J., Herrlich H., Strecker G.: Abstract and Concrete Categories. John Wiley& Sons Inc., New York (1990)

    MATH  Google Scholar 

  2. Birkhoff, G.: Lattice Theory (3d ed.), AMS Coll. Publ. 25 Providence, R.I. (1973)

  3. Crawley, P., Dilworth, R.P.: Algebraic Theory of Lattices. Prentice-Hall, Inc. (1973)

  4. Czédli G., Horváth E.K.: Congruence distributivity and modularity permit tolerances. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 41, 39–42 (2002)

    MATH  Google Scholar 

  5. Czédli G., Horváth E.K., Radeleczki S.: On tolerance lattices of algebras in congruence modular varieties. Acta Math. Hungar 100, 9–17 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Czédli G., Horváth E.K., Lipparini P.: Optimal Mal’tsev conditions for congruence modular varieties. Algebra Universalis 53, 267–279 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Czédli G., Šešelja B., Tepavčević A.: Semidistributive elements in lattices; application to groups and rings. Algebra Universalis 58, 349–355 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dikranjan D., Tholen W.: Categorical Structure of Closure Operators. Kluwer Acad. Publ., Dordrecht (1995)

    MATH  Google Scholar 

  9. Dobbertin H., Erné M., Kent D.: A note on order convergence in complete lattices. Rocky Mountain J. Math. 14, 647–654 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Erné M.: Scott convergence and Scott topology on partially ordered sets II. In: Banaschewski, B., Hoffmann, R.-E. (eds) Continuous Lattices, Bremen 1979, Lecture Notes in Math 871., pp. 61–96. Springer–Verlag:, Berlin – Heidelberg – New York (1981)

    Google Scholar 

  11. Erné M.: Algebraic ordered sets and their generalizations. In: Rosenberg, I., Sabidussi, G. (eds) Algebras and Orders., Kluwer Acad Publ., Amsterdam (1993)

    Google Scholar 

  12. Erné M.: Z-continuous posets and their topological manifestation. Appl. Cat. Structures 7, 31–70 (1999)

    Article  MATH  Google Scholar 

  13. Erné, M.: Continuous closure operators as diagrams. Preprint, Leibniz University Hannover (2007)

  14. Erné, M.: Closure. In: Mynard, F. Pearl, E. (eds.) Beyond Topology. AMS Contemporary Mathematics, Vol. 486 (2009)

  15. Erné, M., Gatzke, H.: Convergence and continuity in partially ordered sets and semilattices. In: Hoffmann, R.-E., Hofmann, K. H. (eds.) Continuous Lattices and Their Applications. Lecture Notes Pure and Appl. Math. 109, Marcel Dekker, New York (1985)

  16. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S: Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications 93, Cambridge University Press (2003)

  17. Grätzer G.: General Lattice Theory. Birkhäuser Verlag, Basel–Stuttgart (1978)

    Google Scholar 

  18. Grätzer G., Schmidt E.T.: Standard ideals in lattices. Acta Math. Acad. Sci. Hungar. 12, 17–86 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  19. Grätzer G., Schmidt E.T.: Characterizations of congruence lattices of abstract algebras. Acta Sci. Math. (Szeged) 24, 34–59 (1963)

    MATH  MathSciNet  Google Scholar 

  20. Johnstone P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  21. Lampe W.A.: The independence of certain related structures of a universal algebra, IV. Algebra Universalis 2, 296–302 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lukács E., Pálfy P.P.: Modularity of the subgroup lattice of a direct square. Arch. Math. (Basel) 46(1), 18–19 (1986)

    MathSciNet  Google Scholar 

  23. Obraztsov N.V.: Simple torsion-free groups in which the intersection of any two subgroups is non-trivial. J. Algebra 199, 337–343 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ore O.: Structures and group theory II. Duke Math. J. 4, 247–269 (1938)

    Article  MathSciNet  Google Scholar 

  25. Robinson, D.J.S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80. Springer–Verlag, New York – Berlin. (1982)

  26. Schmidt R.: Subgroup Lattices of Groups. De Gruyter, Berlin (1994)

    MATH  Google Scholar 

  27. Šešelja B., Tepavčević A.: Weak congruences in universal algebra. Institute of Mathematics, Novi Sad (2001)

    MATH  Google Scholar 

  28. Šešelja, B., Vojvodić, G.: A note on some lattice characterizations of Hamiltonian groups. Rev. Res. Fac. Sci. Univ. Novi Sad 19-1, 179–184 (1989)

    Google Scholar 

  29. Suzuki, M.: Structure of a group and the structure of its lattice of subgroups. Ergebnisse der Mathematik 10, Springer–Verlag, Berlin – Göttingen – Heidelberg (1956)

  30. Traustason G.: CIP-groups. Arch. Math. 65, 97–102 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tuma J.: Intervals in subgroup lattices of infinite groups. J. Algebra 125, 367–399 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Vojvodić, G., Šešelja, B.: A note on the modularity of the lattice of weak congruences of a finite group. Contributions to General Algebra 5, 415–419, Wien (1987)

    Google Scholar 

  33. Vojvodić G., Šešelja B.: On the lattice of weak congruence relations. Algebra Universalis 25, 121–130 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wallman H.: Lattices and topological spaces. Ann. of Math. 39, 112–126 (1938)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Czédli.

Additional information

Presented by M. Ploščica.

The research of the first author was partially supported by the NFSR of Hungary (OTKA), Grant No. T 049433 and K 60148, and also by the grant for the project “Lattice methods and applications” detailed below, that covered his visit to Novi Sad. The research of the third and the fourth authors was partially supported by the Serbian Ministry of Science and Environment, Grant No. 144011, and by the Provincial Secretariat for Science and Tech. Development, Auton. Province of Vojvodina, Grant “Lattice methods and applications”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czédli, G., Erné, M., Šešelja, B. et al. Characteristic triangles of closure operators with applications in general algebra. Algebra Univers. 62, 399–418 (2009). https://doi.org/10.1007/s00012-010-0059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-010-0059-2

2000 Mathematics Subject Classification

Key words and phrases

Navigation