Skip to main content
Log in

Some algebraic characterizations of F-frames

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

In pointfree topology, F-frames have been defined by Ball and Walters-Wayland by means of a frame-theoretic translation of the topological characterization of F-spaces as those whose cozero-sets are C*-embedded. This is a departure from the way in which F-spaces were defined by Gillman and Henriksen as those spaces X for which the ring C(X) is Bézout, meaning that every finitely generated ideal is principal. In this note, we show that, as in the case of spaces, a frame L is an F-frame precisely when the ring \({\mathcal{R}L}\) of continuous real-valued functions on L is Bézout. A commutative ring with identity is called almost weak Baer if the annihilator of each element is generated by idempotents. We establish that \({\mathcal{R}L}\) is almost weak Baer iff L is a strongly zero-dimensional F-frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, R.N., Walters-Wayland, J.: C- and C*-quotients in pointfree topology. Dissertationes Mathematicae (Rozprawy Mat.), vol. 412 (2002)

  2. Banaschewski, B.: The real numbers in pointfree topology. Textos de Matemática Série B, no. 12. Departamento de Matemática da Universidade de Coimbra (1997)

  3. Banaschewski B.: A uniform view of localic realcompactness. J. Pure Appl. Algebra 143, 49–68 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Banaschewski B.: On the function ring functor in pointfree topology. Appl. Categ. Structures 13, 305–328 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Banaschewski B., Brümmer G.C.L.: Functorial uniformities on strongly zero-dimensional frames. Kyungpook Math. J. 41, 179–190 (2002)

    Google Scholar 

  6. Banaschewski B., Gilmour C.: Pseudocompactness and the cozero part of a frame. Comment. Math. Univ. Carolin. 37, 577–587 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Banaschewski B., Pultr A.: Samuel compactification of uniform frames. Math. Proc. Camb. Phil. Soc. 108, 63–78 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Blair R.L., Hager A.W.: Extensions of zero-sets and real-valued functions. Math. Z. 136, 41–52 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dube T.: Notes on C- and C*-quotients of frames. Order 25, 369–375 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dube T.: Some ring-theoretic properties of almost P-frames. Algebra Universalis 60, 145–162 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dube, T.: Notes on pointfree disconnectivity with a ring-theoretic slant. Appl. Categ. Struct. DOI10.1007/s10485-008-9162-3

  12. Dube, T.: Concerning P-, essential P- and strongly zero-dimensional frames. Algebra Universalis (to appear)

  13. Dube T., Walters-Wayland J.: Coz-onto frame maps and some applications. Appl. Categ. Structures 15, 119–133 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ghosh S.K.: Intersections of minimal prime ideals in the rings of continuous functions. Comment. Math. Univ. Carolin. 47, 623–632 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Gillman L., Henriksen M.: Rings of continuous functions in which every finitely generated ideal is principal. Trans. Amer. Math. Soc. 82, 366–391 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, Princeton (1960)

  17. Henriksen, M.: Rings of continuous functions from an algebraic point of view. In: Ordered algebraic structures (Curaao, 1988). Math. Appl., vol. 55, pp. 143–174. Kluwer Acad. Publ., Dordrecht (1989)

  18. Johnstone P.T.: Stone Spaces. Cambridge Univ. Press, Cambridge (1982)

    MATH  Google Scholar 

  19. Madden J., Vermeer H.: Lindelöf locales and realcompactness. Math. Proc. Camb. Phil. Soc. 99, 473–480 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mandelker M.: F′-spaces and z-embedded subspaces. Pacific J. Math. 28, 615–621 (1969)

    MATH  MathSciNet  Google Scholar 

  21. Martinez J., Woodward S.: Bézout and Prüfer rings. Comm. Algebra 20, 2975–2989 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Niefield S.B., Rosenthal K.I.: Sheaves of integral domains on Stone spaces. J. Pure Appl. Algebra 47, 173–179 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rudd D.: On two sums theorem for ideals of C(X). Michigan Math. J. 17, 139–141 (1970)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Themba Dube.

Additional information

Presented by J. Martinez.

In memory of Paul F. Conrad

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dube, T. Some algebraic characterizations of F-frames. Algebra Univers. 62, 273–288 (2009). https://doi.org/10.1007/s00012-010-0054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-010-0054-7

2000 Mathematics Subject Classification

Key words and phrases

Navigation