Counting Ω-ideals


Let \({\mathbb{A}}\) be a universal algebra of signature Ω, and let \({\mathcal{I}}\) be an ideal in the Boolean algebra \({\mathcal{P}_{\mathbb{A}}}\) of all subsets of \({\mathbb{A}}\) . We say that \({\mathcal{I}}\) is an Ω-ideal if \({\mathcal{I}}\) contains all finite subsets of \({\mathbb{A}}\) and \({f(A^{n}) \in \mathcal{I}}\) for every n-ary operation \({f \in \Omega}\) and every \({A \in \mathcal{I}}\) . We prove that there are \({2^{2^{\aleph_0}}}\) Ω-ideals in \({\mathcal{P}_{\mathbb{A}}}\) provided that \({\mathbb{A}}\) is countably infinite and Ω is countable.

This is a preview of subscription content, access via your institution.


  1. 1.

    Dikranjan D., Protasov I. (2008) Counting maximal topologies on countable groups and rings. Topology App. 156: 322–325

    MATH  Article  MathSciNet  Google Scholar 

  2. 2.

    Dranishnikov A. (2000) Asymptotic topology. Russian Math. Survey 52: 71–116

    MathSciNet  Google Scholar 

  3. 3.

    Graham, R.L.: Rudiments of Ramsey Theory. Regional Conf. Series in Math., no. 45. AMS, Providence (1981)

  4. 4.

    Gromov, M.: Asymptotic Invariants of Infinite Groups. London Math. Soc. Lecture Note Series, vol. 182. (1993)

  5. 5.

    Protasov, I., Banakh, T.: Ball Structures and Colorings of Groups and Graphs. Math. Stud. Monogr. Ser., vol. 11. VNTL Publisher, Lviv (2003)

  6. 6.

    Protasov, I., Zarichnyi, M.: General Asymptology. Math. Stud. Monogr. Ser., vol. 12. VNTL Publisher, Lviv (2007)

  7. 7.

    Roe, J.: Lectures on Coarse Geometry. University Lecture Series, vol. 31. AMS, Providence (2003)

Download references

Author information



Corresponding author

Correspondence to Igor V. Protasov.

Additional information

Presented by S. Koppelberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Protasov, I.V. Counting Ω-ideals. Algebra Univers. 62, 339–343 (2009).

Download citation

2000 Mathematics Subject Classification

  • 08A65
  • 06E25

Key words and phrases

  • Boolean algebra
  • Ω-ideal
  • ballean