Skip to main content
Log in

Extracellular histones promote TWIK2-dependent potassium efflux and associated NLRP3 activation in alveolar macrophages during sepsis-induced lung injury

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background and aim

Sepsis-induced acute lung injury (ALI) is a complex and life-threatening condition lacking specific and efficient clinical treatments. Extracellular histones, identified as a novel type of damage-associated molecular patterns, have been implicated in the inflammatory process of ALI. However, further elucidation is needed regarding the precise mechanism through which extracellular histones induce inflammation. The aim of this study was to investigate whether extracellular histones can activate NLRP3 inflammasome-mediated inflammation in alveolar macrophages (AMs) by affecting TWIK2-dependent potassium efflux.

Methods and results

We conducted experiments using cecal ligation and puncture (CLP) C57BL/6 mice and extracellular histone-stimulated LPS-primed MH-S cells. The results demonstrated a significant increase in the levels of extracellular histones in the plasma and bronchoalveolar lavage fluid (BALF) of CLP mice. Furthermore, neutralizing extracellular histone mitigated lung injury and inflammation in CLP-induced ALI mice. In vitro studies confirmed that extracellular histones upregulated the expression of NLRP3 inflammasome activation-related proteins in MH-S cells, and this effect was dependent on increased potassium efflux mediated by the TWIK2 channel on the plasma membrane. Moreover, extracellular histones directly triggered a substantial influx of calcium, leading to increased Rab11 activity and facilitating the trafficking and location of TWIK2 to the plasma membrane.

Conclusion

These findings underscore the critical role of extracellular histone-induced upregulation of TWIK2 expression on the plasma membrane of alveolar macrophages (AMs). This upregulation leads to potassium efflux and subsequent activation of the NLRP3 inflammasome, ultimately exacerbating lung inflammation and injury during sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data support the results of the present study are available from the corresponding author upon a reasonable request.

References

  1. Beitler JR, Thompson BT, Baron RM, Bastarache JA, Denlinger LC, Esserman L, Gong MN, LaVange LM, Lewis RJ, Marshall JC, Martin TR, McAuley DF, Meyer NJ, Moss M, Reineck LA, Rubin E, Schmidt EP, Standiford TJ, Ware LB, Wong HR, Aggarwal NR, Calfee CS. Advancing precision medicine for acute respiratory distress syndrome. Lancet Respir Med. 2022;10(1):107–20. https://doi.org/10.1016/S2213-2600(21)00157-0.

    Article  CAS  PubMed  Google Scholar 

  2. Sheu CC, Gong MN, Zhai R, Chen F, Bajwa EK, Clardy PF, Gallagher DC, Thompson BT, Christiani DC. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest. 2010;138(3):559–67. https://doi.org/10.1378/chest.09-2933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu H, Sheng S, Luo W, Xu X, Zhang Z. Acute respiratory distress syndrome heterogeneity and the septic ARDS subgroup. Front Immunol. 2023;14:1277161. https://doi.org/10.3389/fimmu.2023.1277161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cicchinelli S, Pignataro G, Gemma S, Piccioni A, Picozzi D, Ojetti V, Franceschi F, Candelli M. PAMPs and DAMPs in sepsis: a review of their molecular features and potential clinical implications. Int J Mol Sci. 2024;25(2):962. https://doi.org/10.3390/ijms25020962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Vries F, Huckriede J, Wichapong K, Reutelingsperger C, Nicolaes GAF. The role of extracellular histones in COVID-19. J Intern Med. 2023;293:275–92. https://doi.org/10.1111/joim.13585.

    Article  CAS  PubMed  Google Scholar 

  6. Ligi D, Lo Sasso B, Giglio RV, Maniscalco R, DellaFranca C, Agnello L, Ciaccio M, Mannello F. Circulating histones contribute to monocyte and MDW alterations as common mediators in classical and COVID-19 sepsis. Crit Care. 2022;26:260. https://doi.org/10.1186/s13054-022-04138-2.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, Taylor FB, Esmon NL, Lupu F, Esmon CT. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15:1318–21. https://doi.org/10.1038/nm.2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lv X, Wen T, Song J, Xie D, Wu L, Jiang X, Jiang P, Wen Z. Extracellular histones are clinically relevant mediators in the pathogenesis of acute respiratory distress syndrome. Respir Res. 2017;18:165. https://doi.org/10.1186/s12931-017-0651-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang Y, Wen Z, Guan L, Jiang P, Gu T, Zhao J, Lv X, Wen T. Extracellular histones play an inflammatory role in acid aspiration-induced acute respiratory distress syndrome. Anesthesiology. 2015;122:127–39. https://doi.org/10.1097/ALN.0000000000000429.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang P, Jin Y, Sun M, Jiang X, Yang J, Lv X, Wen Z. Extracellular histones aggravate inflammation in ARDS by promoting alveolar macrophage pyroptosis. Mol Immunol. 2021;135:53–61. https://doi.org/10.1016/j.molimm.2021.04.002.

    Article  CAS  PubMed  Google Scholar 

  11. Grailer JJ, Canning BA, Kalbitz M, Haggadone MD, Dhond RM, Andjelkovic AV, Zetoune FS, Ward PA. Critical role for the NLRP3 inflammasome during acute lung injury. J Immunol. 2014;192(12):5974–83. https://doi.org/10.4049/jimmunol.1400368.

    Article  CAS  PubMed  Google Scholar 

  12. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17:588–606. https://doi.org/10.1038/nrd.2018.97.

    Article  CAS  PubMed  Google Scholar 

  13. Fu J, Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol. 2023;41:301–16. https://doi.org/10.1146/annurev-immunol-081022-021207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38:1142–53. https://doi.org/10.1016/j.immuni.2013.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rivers-Auty J, Brough D. Potassium efflux fires the canon: potassium efflux as a common trigger for canonical and noncanonical NLRP3 pathways. Eur J Immunol. 2015;45:275827–61. https://doi.org/10.1002/eji.201545958.

    Article  CAS  Google Scholar 

  16. Xu J, Núñez G. The NLRP3 inflammasome: activation and regulation. Trends Biochem Sci. 2023;48:331–44. https://doi.org/10.1016/j.tibs.2022.10.002.

    Article  CAS  PubMed  Google Scholar 

  17. Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev. 2010;90:559–605. https://doi.org/10.1152/physrev.00029.2009.

    Article  CAS  PubMed  Google Scholar 

  18. O’Kelly I. Endocytosis as a mode to regulate functional expression of two-pore domain potassium (K2P) channels. Pflugers Arch. 2015;467:1133–42. https://doi.org/10.1007/s00424-014-1641-9.

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen NH, Brodsky JL. The cellular pathways that maintain the quality control and transport of diverse potassium channels. Biochim Biophys Acta Gene Regul Mech. 2023;1866: 194908. https://doi.org/10.1016/j.bbagrm.2023.194908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Di A, Xiong S, Ye Z, Malireddi RKS, Kometani S, Zhong M, Mittal M, Hong Z, Kanneganti TD, Rehman J, Malik AB. The TWIK2 potassium efflux channel in macrophages mediates NLRP3 inflammasome-induced inflammation. Immunity. 2018;49:56-65.e4. https://doi.org/10.1016/j.immuni.2018.04.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Drinkall S, Lawrence CB, Ossola B, Russell S, Bender C, Brice NB, Dawson LA, Harte M, Brough D. The two pore potassium channel THIK-1 regulates NLRP3 inflammasome activation. Glia. 2022;70:1301–16. https://doi.org/10.1002/glia.24174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Busch CJ, Favret J, Geirsdóttir L, Molawi K, Sieweke MH. Isolation and long-term cultivation of mouse alveolar macrophages. Bio Protoc. 2019;9(14): e3302. https://doi.org/10.21769/BioProtoc.3302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim SK, Joe Y, Chen Y, Ryu J, Lee JH, Cho GJ, Ryter SW, Chung HT. Carbon monoxide decreases interleukin-1β levels in the lung through the induction of pyrin. Cell Mol Immunol. 2017;14:349–59. https://doi.org/10.1038/cmi.2015.79.

    Article  CAS  PubMed  Google Scholar 

  24. Ding X, Yang DR, Xia L, Chen B, Yu S, Niu Y, Wang M, Li G, Chang C. Targeting TR4 nuclear receptor suppresses prostate cancer invasion via reduction of infiltrating macrophages with alteration of the TIMP-1/MMP2/MMP9 signals. Mol Cancer. 2015;14:16. https://doi.org/10.1186/s12943-014-0281-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Evavold CL, Hafner-Bratkovič I, Devant P, D’Andrea JM, Ngwa EM, Boršić E, Doench JG, LaFleur MW, Sharpe AH, Thiagarajah JR, Kagan JC. Control of gasdermin D oligomerization and pyroptosis by the ragulator-Rag-mTORC1 pathway. Cell. 2021;184:4495–511. https://doi.org/10.1016/j.cell.2021.06.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holdenrieder S, Stieber P. Clinical use of circulating nucleosomes. Crit Rev Clin Lab Sci. 2009;46:1–24. https://doi.org/10.1080/10408360802485875.

    Article  CAS  PubMed  Google Scholar 

  27. Holdenrieder S, Stieber P, Bodenmüller H, Busch M, Von Pawel J, Schalhorn A, Nagel D, Seidel D. Circulating nucleosomes in serum. Ann N Y Acad Sci. 2001;945:93–102. https://doi.org/10.1111/j.1749-6632.2001.tb03869.x.

    Article  CAS  PubMed  Google Scholar 

  28. Bosmann M, Grailer JJ, Ruemmler R, Russkamp NF, Zetoune FS, Sarma JV, Standiford TJ, Ward PA. Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury. FASEB J. 2013;27(12):5010–21. https://doi.org/10.1096/fj.13-236380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu XY, Lv JY, Zhang SQ, Yi X, Xu ZW, Zhi YX, Zhao BX, Pang JX, Yung KKL, Liu SW, Zhou PZ. ML365 inhibits TWIK2 channel to block ATP-induced NLRP3 inflammasome. Acta Pharmacol Sin. 2022;43:992–1000. https://doi.org/10.1038/s41401-021-00739-9.

    Article  CAS  PubMed  Google Scholar 

  30. Borchers AC, Langemeyer L, Ungermann C. Who’s in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. J Cell Biol. 2021;220: e202105120. https://doi.org/10.1083/jcb.202105120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J. 2021;288:36–55. https://doi.org/10.1111/febs.15453.

    Article  CAS  PubMed  Google Scholar 

  32. Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev. 2011;91:119–49. https://doi.org/10.1152/physrev.00059.2009.

    Article  CAS  PubMed  Google Scholar 

  33. Welz T, Wellbourne-Wood J, Kerkhoff E. Orchestration of cell surface proteins by Rab11. Trends Cell Biol. 2014;24:407–15. https://doi.org/10.1016/j.tcb.2014.02.004.

    Article  CAS  PubMed  Google Scholar 

  34. Allam R, Scherbaum CR, Darisipudi MN, Mulay SR, Hägele H, Lichtnekert J, Hagemann JH, Rupanagudi KV, Ryu M, Schwarzenberger C, Hohenstein B, Hugo C, Uhl B, Reichel CA, Krombach F, Monestier M, Liapis H, Moreth K, Schaefer L, Anders HJ. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol. 2012;23:1375–88. https://doi.org/10.1681/ASN.2011111077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lai JJ, Cruz FM, Rock KL. Immune sensing of cell death through recognition of histone sequences by C-type lectin-receptor-2d causes inflammation and tissue injury. Immunity. 2020;52:123–35. https://doi.org/10.1016/j.immuni.2019.11.013.

    Article  CAS  PubMed  Google Scholar 

  36. Wilson AS, Randall KL, Pettitt JA, Ellyard JI, Blumenthal A, Enders A, Quah BJ, Bopp T, Parish CR, Brüstle A. Neutrophil extracellular traps and their histones promote Th17 cell differentiation directly via TLR2. Nat Commun. 2022;13:528. https://doi.org/10.1038/s41467-022-28172-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, Wang SS, Brohi K, Kipar A, Yu W, Wang G, Toh CH. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med. 2013;187:160–9. https://doi.org/10.1164/rccm.201206-1037OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hsieh IN, Deluna X, White MR, Hartshorn KL. Histone H4 directly stimulates neutrophil activation through membrane permeabilization. J Leukoc Biol. 2021;109:763–75. https://doi.org/10.1002/JLB.3A0620-342R.

    Article  CAS  PubMed  Google Scholar 

  39. Silvestre-Roig C, Braster Q, Wichapong K, Lee EY, Teulon JM, Berrebeh N, Winter J, Adrover JM, Santos GS, Froese A, Lemnitzer P, Ortega-Gómez A, Chevre R, Marschner J, Schumski A, Winter C, Perez-Olivares L, Pan C, Paulin N, Schoufour T, Hartwig H, González-Ramos S, Kamp F, Megens RTA, Mowen KA, Gunzer M, Maegdefessel L, Hackeng T, Lutgens E, Daemen M, von Blume J, Anders HJ, Nikolaev VO, Pellequer JL, Weber C, Hidalgo A, Nicolaes GAF, Wong GCL, Soehnlein O. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature. 2019;569:236–40. https://doi.org/10.1038/s41586-019-1167-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jung J, Lee LE, Kim H, Kim JE, Jang SH, Roh JS, Lee B, Robinson WH, Sohn DH, Pyun JC, Song JJ. Extracellular histones aggravate autoimmune arthritis by lytic cell death. Front Immunol. 2022;13: 961197. https://doi.org/10.3389/fimmu.2022.961197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Walker SA, Cullen PJ, Taylor JA, Lockyer PJ. Control of Ras cycling by Ca2+. FEBS Lett. 2003;546:6–10. https://doi.org/10.1016/s0014-5793(03)00412-5.

    Article  CAS  PubMed  Google Scholar 

  42. Kosuru R, Chrzanowska M. Integration of Rap1 and calcium signaling. Int J Mol Sci. 2020;21:1616. https://doi.org/10.3390/ijms21051616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miteva KT, Pedicini L, Wilson LA, Jayasinghe I, Slip RG, Marszalek K, Gaunt HJ, Bartoli F, Deivasigamani S, Sobradillo D, Beech DJ, McKeown L. Rab46 integrates Ca2+ and histamine signaling to regulate selective cargo release from Weibel-Palade bodies. J Cell Biol. 2019;218:2232–46. https://doi.org/10.1083/jcb.201810118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cook AA, Deng W, Ren J, Li R, Sondek J, Bergmeier W. Calcium-induced structural rearrangements release autoinhibition in the Rap-GEF CalDAG-GEFI. J Biol Chem. 2018;293:8521–9. https://doi.org/10.1074/jbc.RA118.002712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guidetti GF, Manganaro D, Consonni A, Canobbio I, Balduini C, Torti M. Phosphorylation of the guanine-nucleotide-exchange factor CalDAG-GEFI by protein kinase a regulates Ca(2+)-dependent activation of platelet Rap1b GTPase. Biochem J. 2013;453:115–23. https://doi.org/10.1042/BJ20130131.

    Article  CAS  PubMed  Google Scholar 

  46. Savina A, Fader CM, Damiani MT, Colombo MI. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic. 2005;6:131–43. https://doi.org/10.1111/j.1600-0854.2004.00257.x.

    Article  CAS  PubMed  Google Scholar 

  47. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517–29. https://doi.org/10.1038/nrm1155.

    Article  CAS  PubMed  Google Scholar 

  48. Hsieh PC, Wu YK, Yang MC, Su WL, Kuo CY, Lan CC. Deciphering the role of damage-associated molecular patterns and inflammatory responses in acute lung injury. Life Sci. 2022;305: 120782. https://doi.org/10.1016/j.lfs.2022.120782.

    Article  CAS  PubMed  Google Scholar 

  49. Jaimes F, De La Rosa G, Morales C, Fortich F, Arango C, Aguirre D, Muñoz A. Unfractioned heparin for treatment of sepsis: a randomized clinical trial (the HETRASE study). Crit Care Med. 2009;37:1185–96. https://doi.org/10.1097/CCM.0b013e31819c06bc.

    Article  CAS  PubMed  Google Scholar 

  50. Yalcinkaya M, Fotakis P, Liu W, Endo-Umeda K, Dou H, Abramowicz S, Xiao T, Libby P, Wang N, Tall AR, Westerterp M. Cholesterol accumulation in macrophages drives NETosis in atherosclerotic plaques via IL-1β secretion. Cardiovasc Res. 2023;119:969–81. https://doi.org/10.1093/cvr/cvac189.

    Article  CAS  PubMed  Google Scholar 

  51. Rendeiro AF, Ravichandran H, Bram Y, Chandar V, Kim J, Meydan C, Park J, Foox J, Hether T, Warren S, Kim Y, Reeves J, Salvatore S, Mason CE, Swanson EC, Borczuk AC, Elemento O, Schwartz RE. The spatial landscape of lung pathology during COVID-19 progression. Nature. 2021;593:564–9. https://doi.org/10.1038/s41586-021-03475-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu Y, Xiao J, Cai J, Li R, Sui X, Zhang J, Lu T, Chen H, Chen G, Li H, Jiang C, Zhao X, Xiao C, Lei Y, Yao J, Lv G, Liang J, Zhang Y, Yang JR, Zheng J, Yang Y. Single-cell immune profiling of mouse liver aging reveals Cxcl2+ macrophages recruit neutrophils to aggravate liver injury. Hepatology. 2024;79:589–605. https://doi.org/10.1097/HEP.0000000000000590.

    Article  PubMed  Google Scholar 

  53. Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease. Immunity. 2022;55:1564–80. https://doi.org/10.1016/j.immuni.2022.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dang W, Tao Y, Xu X, Zhao H, Zou L, Li Y. The role of lung macrophages in acute respiratory distress syndrome. Inflamm Res. 2022;71:1417–32. https://doi.org/10.1007/s00011-022-01645-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, Wang C, He Q, Chen G, Yu J, Cang J, Zhong M. Inhibition of sphingosine-1-phosphate receptor 3 suppresses ATP-induced NLRP3 inflammasome activation in macrophages via TWIK2-mediated potassium efflux. Front Immunol. 2023;14:1090202. https://doi.org/10.3389/fimmu.2023.1090202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang LS, Anas M, Xu J, Zhou B, Toth PT, Krishnan Y, Di A, Malik AB. Endosomal trafficking of two-pore K+ efflux channel TWIK2 to plasmalemma mediates NLRP3 inflammasome activation and inflammatory injury. Elife. 2023;12: e83842. https://doi.org/10.7554/eLife.83842.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bobak N, Feliciangeli S, Chen CC, Ben Soussia I, Bittner S, Pagnotta S, Ruck T, Biel M, Wahl-Schott C, Grimm C, Meuth SG, Lesage F. Recombinant tandem of pore-domains in a weakly inward rectifying K+ channel 2 (TWIK2) forms active lysosomal channels. Sci Rep. 2017;7:649. https://doi.org/10.1038/s41598-017-00640-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jiang C, Liu Z, Hu R, Bo L, Minshall RD, Malik AB, Hu G. Inactivation of Rab11a GTPase in macrophages facilitates phagocytosis of apoptotic neutrophils. J Immunol. 2017;198:1660–72. https://doi.org/10.4049/jimmunol.1601495.

    Article  CAS  PubMed  Google Scholar 

  59. Cox D, Lee DJ, Dale BM, Calafat J, Greenberg S. A Rab11-containing rapidly recycling compartment in macrophages that promotes phagocytosis. Proc Natl Acad Sci U S A. 2000;97:680–5. https://doi.org/10.1073/pnas.97.2.680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Al-Aqtash R, Ross MS, Collier DM. Extracellular histone proteins activate P2XR7 channel current. J Gen Physiol. 2023;155: e202213317. https://doi.org/10.1085/jgp.202213317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Di Giovanni J, Iborra C, Maulet Y, Lévêque C, El Far O, Seagar M. Calcium-dependent regulation of SNARE-mediated membrane fusion by calmodulin. J Biol Chem. 2010;285:23665–75. https://doi.org/10.1074/jbc.M109.096073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Südhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science. 2009;323:474–7. https://doi.org/10.1126/science.1161748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82170107, to ZMW), the Program of Shanghai Municipal Health Commission (202140406, to ZMW), the Excellent Subject Leader Program of Shanghai Municipal Health Commission (2022XD007, to ZMW), and the Foundation of the Science and Technology Commission of Shanghai Municipality (19ZR1443000 and 23ZR1453300, to ZMW).

Funding

National Natural Science Foundation of China,82170107, Program of Shanghai Municipal Health Commission, 202140406, Foundation of the Science and Technology Commission of Shanghai Municipality,19ZR1443000, 23ZR1453300, Excellent Subject Leader Program of Shanghai Municipal Health Commission, 2022XD007.

Author information

Authors and Affiliations

Authors

Contributions

ZMW secured the funding to support the project and the overall study. ZMW and CC conceptualized, designed, and supervised the study. JY, YF and NZ conducted the experiments, analyzed the results, and contributed to the manuscript writing. JMG, ZYZ and XMJ assisted in performing the experiments and provided technical support. ZMW and CC reviewed and revised the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Chang Chen or Zongmei Wen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Fu, Y., Zhang, N. et al. Extracellular histones promote TWIK2-dependent potassium efflux and associated NLRP3 activation in alveolar macrophages during sepsis-induced lung injury. Inflamm. Res. (2024). https://doi.org/10.1007/s00011-024-01888-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00011-024-01888-3

Keywords

Navigation