Skip to main content
Log in

Identification of diagnostic markers related to inflammatory response and cellular senescence in endometriosis using machine learning and in vitro experiment

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To understand the association between chronic inflammation, cellular senescence, and immunological infiltration in endometriosis.

Methods

Datasets from GEO comprising 108 endometriosis and 97 healthy human samples and the human endometrial stromal cell. Differentially expressed genes were identified using Limma and WGCNA. Inflammatory response-related subtypes were constructed using consensus clustering analysis. The CIBERSORT algorithm and correlation analyses assessed immune cell infiltration. LASSO, SVM-RFE, and RF identified diagnostic genes. Functional enrichment analysis and multifactor regulatory networks established functional effects. Nomograms, internal and external validations, and in vitro experiments validated the diagnostic genes.

Results

Inflammatory response subtypes were highly correlated with the immune activities of B and NK cells. Sixteen genes were associated with inflammatory response and cellular senescence and six diagnostic genes (NLK, RAD51, TIMELESS, TBX3, MET, and BTG3) were identified. The six diagnostic gene models had an area under the curve of 0.828 and their expression was significantly downregulated in endometriosis samples. Low expression of NLK and BTG3 promoted the proliferation, migration, and invasion of endometriotic cells.

Conclusions

Inflammatory response subtypes were successfully constructed for endometriosis. Six diagnostic genes related to inflammatory response and cellular senescence were identified and validated. Our study provides novel insights for inflammatory response in endometriosis and markers for endometriosis diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Allaire C, Bedaiwy MA, Yong PJ. Diagnosis and management of endometriosis. CMAJ. 2023;195:E363–71.

    Article  PubMed  PubMed Central  Google Scholar 

  2. de Ziegler D, Borghese B, Chapron C. Endometriosis and infertility: pathophysiology and management. Lancet. 2010;376:730–8.

    Article  PubMed  Google Scholar 

  3. Horne AW, Missmer SA. Pathophysiology, diagnosis, and management of endometriosis. BMJ. 2022;379: e070750.

    Article  PubMed  Google Scholar 

  4. Taylor HS, Kotlyar AM, Flores VA. Endometriosis is a chronic systemic disease: clinical challenges and novel innovations. Lancet. 2021;397:839–52.

    Article  CAS  PubMed  Google Scholar 

  5. Vercellini P, Vigano P, Somigliana E, Fedele L. Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol. 2014;10:261–75.

    Article  CAS  PubMed  Google Scholar 

  6. Saunders PTK, Horne AW. Endometriosis: Etiology, pathobiology, and therapeutic prospects. Cell. 2021;184:2807–24.

    Article  CAS  PubMed  Google Scholar 

  7. Retrograde menstruation. Lancet. 1983;2:25–6.

  8. Symons LK, Miller JE, Kay VR, Marks RM, Liblik K, Koti M, et al. The immunopathophysiology of endometriosis. Trends Mol Med. 2018;24:748–62.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang T, De Carolis C, Man GCW, Wang CC. The link between immunity, autoimmunity and endometriosis: a literature update. Autoimmun Rev. 2018;17:945–55.

    Article  CAS  PubMed  Google Scholar 

  10. Montagna P, Capellino S, Villaggio B, Remorgida V, Ragni N, Cutolo M, et al. Peritoneal fluid macrophages in endometriosis: correlation between the expression of estrogen receptors and inflammation. Fertil Steril. 2008;90:156–64.

    Article  CAS  PubMed  Google Scholar 

  11. Lousse JC, Van Langendonckt A, Gonzalez-Ramos R, Defrere S, Renkin E, Donnez J. Increased activation of nuclear factor-kappa B (NF-kappaB) in isolated peritoneal macrophages of patients with endometriosis. Fertil Steril. 2008;90:217–20.

    Article  CAS  PubMed  Google Scholar 

  12. Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571:183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular senescence: defining a path forward. Cell. 2019;179:813–27.

    Article  CAS  PubMed  Google Scholar 

  14. van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509:439–46.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhu X, Chen Z, Shen W, Huang G, Sedivy JM, Wang H, et al. Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther. 2021;6:245.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther. 2023;8:239.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sayed N, Huang Y, Nguyen K, Krejciova-Rajaniemi Z, Grawe AP, Gao T, et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat Aging. 2021;1:598–615.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Munoz-Espin D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15:482–96.

    Article  CAS  PubMed  Google Scholar 

  19. Yang P, Lu J, Zhang P, Zhang S. Comprehensive analysis of prognosis and immune landscapes based on lipid-metabolism- and ferroptosis-associated signature in uterine corpus endometrial carcinoma. Diagnostics (Basel). 2023;13(5):870.

    Article  PubMed  Google Scholar 

  20. Yang P, Zhang P, Zhang S. RNA-binding protein MEX3A interacting with DVL3 stabilizes Wnt/beta-catenin signaling in endometrial carcinoma. Int J Mol Sci. 2022;24(1):592.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Watanabe S, Alexander M, Misharin AV, Budinger GRS. The role of macrophages in the resolution of inflammation. J Clin Invest. 2019;129:2619–28.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Szukiewicz D. Epigenetic regulation and T-cell responses in endometriosis - something other than autoimmunity. Front Immunol. 2022;13: 943839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Catalana R, Kirkpatrick DR. Verbal approval and anxiety in serial-verbal learning. Psychol Rep. 1968;23:1251–4.

    Article  CAS  PubMed  Google Scholar 

  24. Ascher DP, Shoupe BA, Robb M, Maybee DA, Fischer GW. Comparison of standard and quantitative blood cultures in the evaluation of children with suspected central venous line sepsis. Diagn Microbiol Infect Dis. 1992;15:499–503.

    Article  CAS  PubMed  Google Scholar 

  25. Lv SJ, Sun JN, Gan L, Sun J. Identification of molecular subtypes and immune infiltration in endometriosis: a novel bioinformatics analysis and In vitro validation. Front Immunol. 2023;14:1130738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang H, Zhang X, Wu Y, Zhang B, Wei J, Li J, et al. Bioinformatics identification and validation of biomarkers and infiltrating immune cells in endometriosis. Front Immunol. 2022;13: 944683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gan L, Sun J, Sun J. Bioinformatical analysis identifies PDLIM3 as a potential biomarker associated with immune infiltration in patients with endometriosis. PeerJ. 2022;10: e13218.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wilson TJ, Hertzog PJ, Angus D, Munnery L, Wood EC, Kola I. Decreased natural killer cell activity in endometriosis patients: relationship to disease pathogenesis. Fertil Steril. 1994;62:1086–8.

    Article  CAS  PubMed  Google Scholar 

  29. Sikora J, Mielczarek-Palacz A, Kondera-Anasz Z. Role of natural killer cell activity in the pathogenesis of endometriosis. Curr Med Chem. 2011;18:200–8.

    Article  CAS  PubMed  Google Scholar 

  30. Kanzaki H, Wang HS, Kariya M, Mori T. Suppression of natural killer cell activity by sera from patients with endometriosis. Am J Obstet Gynecol. 1992;167:257–61.

    Article  CAS  PubMed  Google Scholar 

  31. Riccio LGC, Baracat EC, Chapron C, Batteux F, Abrao MS. The role of the B lymphocytes in endometriosis: a systematic review. J Reprod Immunol. 2017;123:29–34.

    Article  CAS  PubMed  Google Scholar 

  32. Cargnello M. Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75:50–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Peng C, Wu G, Wang Y, Liu R, Yang S, et al. Expression of NLK and its potential effect in ovarian cancer chemotherapy. Int J Gynecol Cancer. 2011;21:1380–7.

    Article  PubMed  Google Scholar 

  34. Wang X, Veeraraghavan J, Liu CC, Cao X, Qin L, Kim JA, et al. Therapeutic targeting of nemo-like kinase in primary and acquired endocrine-resistant breast cancer. Clin Cancer Res. 2021;27:2648–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi C, Xu L, Tang Z, Zhang W, Wei Y, Ni J, et al. Knockdown of nemo-like kinase promotes metastasis in non-small-cell lung cancer. Oncol Rep. 2019;42:1090–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bhowmick R, Lerdrup M, Gadi SA, Rossetti GG, Singh MI, Liu Y, et al. RAD51 protects human cells from transcription-replication conflicts. Mol Cell. 2022;82(3366–3381): e9.

    Google Scholar 

  37. Choi YS, Park JH, Lee JH, Yoon JK, Yun BH, Park JH, et al. Association between impairment of DNA double strand break repair and decreased ovarian reserve in patients with endometriosis. Front Endocrinol (Lausanne). 2018;9:772.

    Article  PubMed  Google Scholar 

  38. Barrio-Alonso E, Lituma PJ, Notaras MJ, Albero R, Bouchekioua Y, Wayland N, et al. Circadian protein TIMELESS regulates synaptic function and memory by modulating cAMP signaling. Cell Rep. 2023;42: 112375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao M, Wang Y, Xiao Y, Zheng D, Zhi C, Xia X, et al. Activation of the clock gene TIMELESS by H3k27 acetylation promotes colorectal cancer tumorigenesis by binding to Myosin-9. J Exp Clin Cancer Res. 2021;40:162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang S, Huang P, Dai H, Li Q, Hu L, Peng J, et al. TIMELESS regulates sphingolipid metabolism and tumor cell growth through Sp1/ACER2/S1P axis in ER-positive breast cancer. Cell Death Dis. 2020;11:892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wei S, Wu X, Chen M, Xiang Z, Li X, Zhang J, et al. Exosomal-miR-129-2-3p derived from Fusobacterium nucleatum-infected intestinal epithelial cells promotes experimental colitis through regulating TIMELESS-mediated cellular senescence pathway. Gut Microbes. 2023;15:2240035.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shen X, Li M, Mao Z, Yu W. Loss of circadian protein TIMELESS accelerates the progression of cellular senescence. Biochem Biophys Res Commun. 2018;503:2784–91.

    Article  CAS  PubMed  Google Scholar 

  43. Xing X, Gu F, Hua L, Cui X, Li D, Wu Z, et al. TIMELESS promotes tumor progression by enhancing macrophages recruitment in ovarian cancer. Front Oncol. 2021;11: 732058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morales-Santana S, Morell S, Leon J, Carazo-Gallego A, Jimenez-Lopez JC, Morell M. An overview of the polymorphisms of circadian genes associated with endocrine cancer. Front Endocrinol (Lausanne). 2019;10:104.

    Article  PubMed  Google Scholar 

  45. Wang Z, He S, Xin L, Zhou Y, Zhao L, Wang F. HMGB1-mediated transcriptional activation of circadian gene TIMELESS contributes to endometrial cancer progression through Wnt-beta-catenin pathway. Cell Signal. 2024;116: 111045.

    Article  CAS  PubMed  Google Scholar 

  46. Khan SF, Damerell V, Omar R, Du Toit M, Khan M, Maranyane HM, et al. The roles and regulation of TBX3 in development and disease. Gene. 2020;726: 144223.

    Article  CAS  PubMed  Google Scholar 

  47. Liang B, Zhou Y, Qian M, Xu M, Wang J, Zhang Y, et al. TBX3 functions as a tumor suppressor downstream of activated CTNNB1 mutants during hepatocarcinogenesis. J Hepatol. 2021;75:120–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yotova I, Hsu E, Do C, Gaba A, Sczabolcs M, Dekan S, et al. Epigenetic alterations affecting transcription factors and signaling pathways in stromal cells of endometriosis. PLoS ONE. 2017;12: e0170859.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guo R, Luo J, Chang J, Rekhtman N, Arcila M, Drilon A. MET-dependent solid tumours: molecular diagnosis and targeted therapy. Nat Rev Clin Oncol. 2020;17:569–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khan KN, Masuzaki H, Fujishita A, Kitajima M, Sekine I, Matsuyama T, et al. Estrogen and progesterone receptor expression in macrophages and regulation of hepatocyte growth factor by ovarian steroids in women with endometriosis. Hum Reprod. 2005;20:2004–13.

    Article  CAS  PubMed  Google Scholar 

  51. Yoshida S, Harada T, Mitsunari M, Iwabe T, Sakamoto Y, Tsukihara S, et al. Hepatocyte growth factor/Met system promotes endometrial and endometriotic stromal cell invasion via autocrine and paracrine pathways. J Clin Endocrinol Metab. 2004;89:823–32.

    Article  CAS  PubMed  Google Scholar 

  52. Yamashita Y, Akatsuka S, Shinjo K, Yatabe Y, Kobayashi H, Seko H, et al. Met is the most frequently amplified gene in endometriosis-associated ovarian clear cell adenocarcinoma and correlates with worsened prognosis. PLoS ONE. 2013;8: e57724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cheng YC, Chiang HY, Cheng SJ, Chang HW, Li YJ, Shieh SY. Loss of the tumor suppressor BTG3 drives a pro-angiogenic tumor microenvironment through HIF-1 activation. Cell Death Dis. 2020;11:1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ren T, Hou J, Liu C, Shan F, Xiong X, Qin A, et al. The long non-coding RNA HOTAIRM1 suppresses cell progression via sponging endogenous miR-17-5p/ B-cell translocation gene 3 (BTG3) axis in 5-fluorouracil resistant colorectal cancer cells. Biomed Pharmacother. 2019;117: 109171.

    Article  CAS  PubMed  Google Scholar 

  55. Geng R, Huang X, Li L, Guo X, Wang Q, Zheng Y, et al. Gene expression analysis in endometriosis: Immunopathology insights, transcription factors and therapeutic targets. Front Immunol. 2022;13:1037504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bjorkman S, Taylor HS. MicroRNAs in endometriosis: biological function and emerging biomarker candidatesdagger. Biol Reprod. 2019;100:1135–46.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Science and Technology Commission of Shanghai Municipality (22Y11906100) to Jing Sun and Shanghai Outstanding Academic Leaders Plan to Jing Sun (Year 2019).

Author information

Authors and Affiliations

Authors

Contributions

Pusheng Yang Conceptualization, Methodology, Software, Visualization, Validation and Writing – original draft. Yaxin Miao, Visualization, Validation. Tao Wang, Validation. Jing Sun: Conceptualization, Supervision, Writing – review & editing. All authors contributed to manuscript revision, read, and approved the submitted version.

Corresponding author

Correspondence to Jing Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Miao, Y., Wang, T. et al. Identification of diagnostic markers related to inflammatory response and cellular senescence in endometriosis using machine learning and in vitro experiment. Inflamm. Res. (2024). https://doi.org/10.1007/s00011-024-01886-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00011-024-01886-5

Keywords

Navigation