Skip to main content

Advertisement

Log in

Bakuchicin alleviates ovalbumin-induced allergic asthma by regulating M2 macrophage polarization

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Asthma is an airway inflammatory disease caused by activation of numerous immune cells including macrophages. Bakuchicin (BKC) is known to exhibit anti-inflammatory effects and type 2 T helper (Th2) regulation, but has not been investigated for airway inflammation. This study aimed to evaluate the effects of BKC on airway inflammation and demonstrate the mechanisms of macrophage polarization.

Methods

The anti-inflammatory effects were determined using lipopolysaccharide (LPS)-stimulated macrophages. The ovalbumin (OVA)-induced asthma mouse model was used to evaluate the effects of BKC on airway inflammation and Th2 responses. Moreover, the effect of BKC on macrophage polarization was confirmed in bone marrow-derived macrophages (BMDMs) differentiation.

Results

BKC suppressed nitric oxide production and expression of pro-inflammatory cytokines by inhibiting signaling pathway in LPS-stimulated macrophages. In an OVA-induced asthma model, BKC treatment alleviated histological changes and mast cell infiltration and reduced the levels of eosinophil peroxidase, β-hexosaminidase, and immunoglobulin levels. In addition, BKC alleviated Th2 responses and M2 macrophage populations in bronchoalveolar fluid. In BMDMs, BKC suppressed IL-4-induced M2 macrophage polarization and the expression of M2 markers such as arginase-1 and Fizz-1 through inhibiting sirtuin 2 levels.

Conclusion

BKC could be a drug candidate for the treatment of allergic asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Draijer C, Peters-Golden M. Alveolar macrophages in allergic asthma: the forgotten cell awakes. Curr Allergy Asthma Rep. 2017;17:12. https://doi.org/10.1007/s11882-017-0681-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akira S, Misawa T, Satoh T, Saitoh T. Macrophages control innate inflammation. Diab Obes Metab. 2013;15(Suppl 3):10–8. https://doi.org/10.1111/dom.12151.

    Article  CAS  Google Scholar 

  3. Saradna A, Do DC, Kumar S, Fu QL, Gao P. Macrophage polarization and allergic asthma. Transl Res. 2018;191:1–14. https://doi.org/10.1016/j.trsl.2017.09.002.

    Article  CAS  PubMed  Google Scholar 

  4. Nie Y, Wang Z, Chai G, Xiong Y, Li B, Zhang H, et al. Dehydrocostus lactone suppresses LPS-induced acute lung injury and macrophage activation through NF-kappaB signaling pathway mediated by p38 MAPK and Akt. Molecules. 2019. https://doi.org/10.3390/molecules24081510.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Feng H, Yin Y, Zheng R, Kang J. Rosiglitazone ameliorated airway inflammation induced by cigarette smoke via inhibiting the M1 macrophage polarization by activating PPARgamma and RXRalpha. Int Immunopharmacol. 2021;97: 107809. https://doi.org/10.1016/j.intimp.2021.107809.

    Article  CAS  PubMed  Google Scholar 

  6. Shi Q, Zhao L, Xu C, Zhang L, Zhao H. High molecular weight hyaluronan suppresses macrophage M1 polarization and enhances IL-10 production in PM2.5-induced lung inflammation. Molecules. 2019. https://doi.org/10.3390/molecules24091766.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Byrne AJ, Mathie SA, Gregory LG, Lloyd CM. Pulmonary macrophages: key players in the innate defence of the airways. Thorax. 2015;70:1189–96. https://doi.org/10.1136/thoraxjnl-2015-207020.

    Article  PubMed  Google Scholar 

  8. Iwasaki N, Matsushita K, Fukuoka A, Nakahira M, Matsumoto M, Akasaki S, et al. Allergen endotoxins induce T-cell-dependent and non-IgE-mediated nasal hypersensitivity in mice. J Allergy Clin Immunol. 2017;139(258–68): e10. https://doi.org/10.1016/j.jaci.2016.03.023.

    Article  CAS  Google Scholar 

  9. Girodet PO, Nguyen D, Mancini JD, Hundal M, Zhou X, Israel E, et al. Alternative macrophage activation is increased in asthma. Am J Respir Cell Mol Biol. 2016;55:467–75. https://doi.org/10.1165/rcmb.2015-0295OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee YG, Reader BF, Herman D, Streicher A, Englert JA, Ziegler M, et al. Sirtuin 2 enhances allergic asthmatic inflammation. JCI Insight. 2019. https://doi.org/10.1172/jci.insight.124710.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gomes P, Fleming Outeiro T, Cavadas C. Emerging role of sirtuin 2 in the regulation of mammalian metabolism. Trends Pharmacol Sci. 2015;36:756–68. https://doi.org/10.1016/j.tips.2015.08.001.

    Article  CAS  PubMed  Google Scholar 

  12. Watroba M, Dudek I, Skoda M, Stangret A, Rzodkiewicz P, Szukiewicz D. Sirtuins, epigenetics and longevity. Ageing Res Rev. 2017;40:11–9. https://doi.org/10.1016/j.arr.2017.08.001.

    Article  CAS  PubMed  Google Scholar 

  13. Buechler N, Wang X, Yoza BK, McCall CE, Vachharajani V. Sirtuin 2 regulates microvascular inflammation during sepsis. J Immunol Res. 2017;2017:2648946. https://doi.org/10.1155/2017/2648946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lo Sasso G, Menzies KJ, Mottis A, Piersigilli A, Perino A, Yamamoto H, et al. SIRT2 deficiency modulates macrophage polarization and susceptibility to experimental colitis. PLoS One. 2014;9: e103573. https://doi.org/10.1371/journal.pone.0103573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee AS, Jung YJ, Kim D, Nguyen-Thanh T, Kang KP, Lee S, et al. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages. Biochem Biophys Res Commun. 2014;450:1363–9. https://doi.org/10.1016/j.bbrc.2014.06.135.

    Article  CAS  PubMed  Google Scholar 

  16. Wang B, Zhang Y, Cao W, Wei X, Chen J, Ying W. SIRT2 plays significant roles in lipopolysaccharides-induced neuroinflammation and brain injury in mice. Neurochem Res. 2016;41:2490–500. https://doi.org/10.1007/s11064-016-1981-2.

    Article  CAS  PubMed  Google Scholar 

  17. Sun NJ, Woo SH, Cassady JM, Snapka RM. DNA polymerase and topoisomerase II inhibitors from Psoralea corylifolia. J Nat Prod. 1998;61:362–6. https://doi.org/10.1021/np970488q.

    Article  CAS  PubMed  Google Scholar 

  18. Khatune NA, Islam ME, Haque ME, Khondkar P, Rahman MM. Antibacterial compounds from the seeds of Psoralea corylifolia. Fitoterapia. 2004;75:228–30. https://doi.org/10.1016/j.fitote.2003.12.018.

    Article  CAS  PubMed  Google Scholar 

  19. Lim JS, Kim JY, Lee S, Choi JK, Kim EN, Choi YA, et al. Bakuchicin attenuates atopic skin inflammation. Biomed Pharmacother. 2020;129: 110466. https://doi.org/10.1016/j.biopha.2020.110466.

    Article  CAS  PubMed  Google Scholar 

  20. Oishi S, Takano R, Tamura S, Tani S, Iwaizumi M, Hamaya Y, et al. M2 polarization of murine peritoneal macrophages induces regulatory cytokine production and suppresses T-cell proliferation. Immunology. 2016;149:320–8. https://doi.org/10.1111/imm.12647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim YY, Lee S, Kim MJ, Kang BC, Dhakal H, Choi YA, et al. Tyrosol attenuates lipopolysaccharide-induced acute lung injury by inhibiting the inflammatory response and maintaining the alveolar capillary barrier. Food Chem Toxicol. 2017;109:526–33. https://doi.org/10.1016/j.fct.2017.09.053.

    Article  CAS  PubMed  Google Scholar 

  22. Kim YY, Hur G, Lee SW, Lee SJ, Lee S, Kim SH, et al. AGK2 ameliorates mast cell-mediated allergic airway inflammation and fibrosis by inhibiting FcepsilonRI/TGF-beta signaling pathway. Pharmacol Res. 2020;159: 105027. https://doi.org/10.1016/j.phrs.2020.105027.

    Article  CAS  PubMed  Google Scholar 

  23. Borregaard N, Sorensen OE, Theilgaard-Monch K. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 2007;28:340–5. https://doi.org/10.1016/j.it.2007.06.002.

    Article  CAS  PubMed  Google Scholar 

  24. Acharya KR, Ackerman SJ. Eosinophil granule proteins: form and function. J Biol Chem. 2014;289:17406–15. https://doi.org/10.1074/jbc.R113.546218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cruse G, Bradding P. Mast cells in airway diseases and interstitial lung disease. Eur J Pharmacol. 2016;778:125–38. https://doi.org/10.1016/j.ejphar.2015.04.046.

    Article  CAS  PubMed  Google Scholar 

  26. Platts-Mills TA. The role of immunoglobulin E in allergy and asthma. Am J Respir Crit Care Med. 2001;164:S1-5. https://doi.org/10.1164/ajrccm.164.supplement_1.2103024.

    Article  CAS  PubMed  Google Scholar 

  27. Firacative C, Gressler AE, Schubert K, Schulze B, Muller U, Brombacher F, et al. Identification of T helper (Th)1- and Th2-associated antigens of Cryptococcus neoformans in a murine model of pulmonary infection. Sci Rep. 2018;8:2681. https://doi.org/10.1038/s41598-018-21039-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu X, Cui J, Yi QJ, Tulake W, Teng F, et al. The role of T cells and macrophages in asthma pathogenesis: a new perspective on mutual crosstalk. Mediators Inflamm. 2020;2020:7835284. https://doi.org/10.1155/2020/7835284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Joshi N, Walter JM, Misharin AV. Alveolar macrophages. Cell Immunol. 2018;330:86–90. https://doi.org/10.1016/j.cellimm.2018.01.005.

    Article  CAS  PubMed  Google Scholar 

  30. van der Veen TA, de Groot LES, Melgert BN. The different faces of the macrophage in asthma. Curr Opin Pulm Med. 2020;26:62–8. https://doi.org/10.1097/MCP.0000000000000647.

    Article  CAS  PubMed  Google Scholar 

  31. Draijer C, Robbe P, Boorsma CE, Hylkema MN, Melgert BN. Dual role of YM1+ M2 macrophages in allergic lung inflammation. Sci Rep. 2018;8:5105. https://doi.org/10.1038/s41598-018-23269-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen X, Xiao Z, Jiang Z, Jiang Y, Li W, Wang M. Schisandrin B attenuates airway inflammation and airway remodeling in asthma by inhibiting NLRP3 inflammasome activation and reducing pyroptosis. Inflammation. 2021;44:2217–31. https://doi.org/10.1007/s10753-021-01494-z.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Q, Hong L, Chen M, Shi J, Lin X, Huang L, et al. Targeting M2 macrophages alleviates airway inflammation and remodeling in asthmatic mice via miR-378a-3p/GRB2 pathway. Front Mol Biosci. 2021;8: 717969. https://doi.org/10.3389/fmolb.2021.717969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maruthamuthu V, Henry LJK, Ramar MK, Kandasamy R. Myxopyrum serratulum ameliorates airway inflammation in LPS-stimulated RAW 264.7 macrophages and OVA-induced murine model of allergic asthma. J Ethnopharmacol. 2020;255:112369. https://doi.org/10.1016/j.jep.2019.112369.

    Article  CAS  PubMed  Google Scholar 

  35. Al-Alawi M, Hassan T, Chotirmall SH. Transforming growth factor beta and severe asthma: a perfect storm. Respir Med. 2014;108:1409–23. https://doi.org/10.1016/j.rmed.2014.08.008.

    Article  PubMed  Google Scholar 

  36. Haddad A, Gaudet M, Plesa M, Allakhverdi Z, Mogas AK, Audusseau S, et al. Neutrophils from severe asthmatic patients induce epithelial to mesenchymal transition in healthy bronchial epithelial cells. Respir Res. 2019;20:234. https://doi.org/10.1186/s12931-019-1186-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chan BCL, Lam CWK, Tam LS, Wong CK. IL33: roles in allergic inflammation and therapeutic perspectives. Front Immunol. 2019;10:364. https://doi.org/10.3389/fimmu.2019.00364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Melgert BN, ten Hacken NH, Rutgers B, Timens W, Postma DS, Hylkema MN. More alternative activation of macrophages in lungs of asthmatic patients. J Allergy Clin Immunol. 2011;127:831–3. https://doi.org/10.1016/j.jaci.2010.10.045.

    Article  PubMed  Google Scholar 

  39. Ichikawa T, Hayashi R, Suzuki K, Imanishi S, Kambara K, Okazawa S, et al. Sirtuin 1 activator SRT1720 suppresses inflammation in an ovalbumin-induced mouse model of asthma. Respirology. 2013;18:332–9. https://doi.org/10.1111/j.1440-1843.2012.02284.x.

    Article  PubMed  Google Scholar 

  40. Zou B, Fu Y, Cao C, Pan D, Wang W, Kong L. Gentiopicroside ameliorates ovalbumin-induced airway inflammation in a mouse model of allergic asthma via regulating SIRT1/NF-kappaB signaling pathway. Pulm Pharmacol Ther. 2021;68: 102034. https://doi.org/10.1016/j.pupt.2021.102034.

    Article  CAS  PubMed  Google Scholar 

  41. Colley T, Mercado N, Kunori Y, Brightling C, Bhavsar PK, Barnes PJ, et al. Defective sirtuin-1 increases IL-4 expression through acetylation of GATA-3 in patients with severe asthma. J Allergy Clin Immunol. 2016;137(1595–7): e7. https://doi.org/10.1016/j.jaci.2015.10.013.

    Article  CAS  Google Scholar 

  42. Zhang XY, Li W, Zhang JR, Li CY, Zhang J, Lv XJ. Roles of sirtuin family members in chronic obstructive pulmonary disease. Respir Res. 2022;23:66. https://doi.org/10.1186/s12931-022-01986-y.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jang HY, Gu S, Lee SM, Park BH. Overexpression of sirtuin 6 suppresses allergic airway inflammation through deacetylation of GATA3. J Allergy Clin Immunol. 2016;138(1452–5): e13. https://doi.org/10.1016/j.jaci.2016.05.019.

    Article  CAS  Google Scholar 

  44. Wang QL, Yang L, Liu ZL, Peng Y, Gao M, Deng LT, et al. Sirtuin 6 regulates macrophage polarization to alleviate sepsis-induced acute respiratory distress syndrome via dual mechanisms dependent on and independent of autophagy. Cytotherapy. 2022;24:149–60. https://doi.org/10.1016/j.jcyt.2021.09.001.

    Article  CAS  PubMed  Google Scholar 

  45. Piracha ZZ, Kwon H, Saeed U, Kim J, Jung J, Chwae YJ, et al. Sirtuin 2 isoform 1 enhances hepatitis B virus RNA transcription and DNA synthesis through the AKT/GSK-3beta/beta-catenin signaling pathway. J Virol. 2018. https://doi.org/10.1128/JVI.00955-18.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang J, Koh HW, Zhou L, Bae UJ, Lee HS, Bang IH, et al. Sirtuin 2 aggravates postischemic liver injury by deacetylating mitogen-activated protein kinase phosphatase-1. Hepatology. 2017;65:225–36. https://doi.org/10.1002/hep.28777.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by KRIBB Research Initiative Program (KGM5242322) and the National Research Foundation of Korea grants funded by the Korean government (2022M3A9G8082645).

Author information

Authors and Affiliations

Authors

Contributions

Y-YK and SJ performed data curation, formal analysis, methodology, validation, investigation, and visualization. SWL, S-JL, and M-CR participated in methodology, software, and validation. S-HK and SL contributed to the study conceptualization, supervision, project administration, resources, and funding acquisition. The original draft was written by Y-YK, and reviewed/edited by S-HK and SL. The final version of the manuscript was read and approved by all authors.

Corresponding authors

Correspondence to Sang-Hyun Kim or Soyoung Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 52 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YY., Jeong, S., Lee, S.W. et al. Bakuchicin alleviates ovalbumin-induced allergic asthma by regulating M2 macrophage polarization. Inflamm. Res. (2024). https://doi.org/10.1007/s00011-024-01859-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00011-024-01859-8

Keywords

Navigation