Skip to main content

Advertisement

Log in

Targeting MyD88: Therapeutic mechanisms and potential applications of the specific inhibitor ST2825

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Myeloid differentiation factor-88 (MyD88) is a crucial adapter protein that coordinates the innate immune response and establishes an adaptive immune response. The interaction of the Toll/Interleukin-1 receptor (IL-1R) superfamily with MyD88 triggers the activation of various signalling pathways such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), promoting the production of a variety of immune and inflammatory mediators and potentially driving the development of a variety of diseases.

Objective

This article will explore the therapeutic potential and mechanism of the MyD88-specific inhibitor ST2825 and describe its use in the treatment of several diseases. We envision future research and clinical applications of ST2825 to provide new ideas for the development of anti-inflammatory drugs and disease-specific drugs to open new horizons for the prevention and treatment of related inflammatory diseases.

Materials and methods

This review analysed relevant literature in PubMed and other databases. All relevant studies on MyD88 inhibitors and ST2825 that were published in the last 20 years were used as screening criteria. These studies looked at the development and improvement of MyD88 inhibitors and ST2825.

Results

Recent evidence using the small-molecule inhibitor of ST2825 has suggested that blocking MyD88 activity can be used to treat diseases such as neuroinflammation, inflammatory diseases such as acute liver/kidney injury, or autoimmune diseases such as systemic lupus erythematosus and can affect transplantation immunity. In addition, ST2825 has potential therapeutic value in B-cell lymphoma with the MyD88 L265P mutation.

Conclusion

Targeting MyD88 is a novel therapeutic strategy, and scientific research is presently focused on the development of MyD88 inhibitors. The peptidomimetic compound ST2825 is a widely studied small-molecule inhibitor of MyD88. Thus, ST2825 may be a potential therapeutic small-molecule agent for modulating host immune regulation in inflammatory diseases and inflammatory therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

AMI:

Acute myocardial infarction

AP-1:

Activator protein-1

Arg:

Arginine

Asp:

Aspartic acid

BMDCs:

Bone marrow-derived dendritic cells

BTK:

Bruton’s tyrosine kinase

BUN:

Blood urea nitrogen

CpG:

Hypermethylated DNA

CLP:

Caecal ligation puncture

COX:

Cyclooxygenase

DAMPs:

Damage-associated molecular patterns

DD:

Death domain

DLBCL:

Diffuse large B-cell lymphoma

DMARDs:

Anti-rheumatic drugs

Fe2O3 NPs:

Iron oxide nanoparticles

Gly:

Glycine

HMGB1:

High mobility histone 1

HSC:

Hepatic stellate cells

ICAM-1:

Intercellular adhesion factor-1

ID:

Intermediate domain

IEC:

Intestinal epithelial cell

IFN:

Interferon

IL:

Interleukin

IL-1R:

Interleukin-1 receptor

IRAK:

Interleukin-1 receptor-associated kinase

IκB:

κB inhibitor protein

Leu:

Leucine

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemotactic protein-1

MMP:

Matrix metalloproteinase

MyD88:

Myeloid differentiation factor-88

NAD(P)H:

Nicotinamide adenine dinucleotide

NF-κB:

Nuclear factor-κB

NLRP:

Nod-like receptor protein

NO:

Nitric oxide

PAMP:

Pathogen-associated molecular pattern

PBMC:

Peripheral blood mononuclear cell

PC:

Plasma cell

PM:

Particulate matter

PMA:

Phorbol 12-myristate 13-acetate

PQ:

Paraquat

Pro:

Proline

PRR:

Pattern-recognition receptor

Prx2:

Peroxiredoxin 2

RA:

Rheumatoid arthritis

rhIL:

Recombinant human interleukin

SAH:

Subarachnoid hemorrhage

Scr:

Serum creatinine

SLE:

Systemic lupus erythematosus

SREBP-2:

Sterol regulatory element-binding protein-2

TBI:

Traumatic brain injury

Thr:

Threonine

TIR:

Translation initiation region

TLR:

Toll-like receptor

TNF:

Tumour necrosis factor

Val:

Valine

VEGF:

Vascular endothelial growth factor

References

  1. Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility[J]. Cell. 2015;160(5):816–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Netea MG, Balkwill F, Chonchol M, et al. Author correction: a guiding map for inflammation[J]. Nat Immunol. 2021;22(2):254.

    Article  CAS  PubMed  Google Scholar 

  3. Lord KA, Hoffman-Liebermann B, Liebermann DA. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6[J]. Oncogene. 1990;5(7):1095–7.

    CAS  PubMed  Google Scholar 

  4. Hardiman G, Rock FL, Balasubramanian S, et al. Molecular characterization and modular analysis of human MyD88[J]. Oncogene. 1996;13(11):2467–75.

    CAS  PubMed  Google Scholar 

  5. Akira S, Takeda K. Toll-like receptor signalling[J]. Nat Rev Immunol. 2004;4(7):499–511.

    Article  CAS  PubMed  Google Scholar 

  6. Baud V, Liu ZG, Bennett B, et al. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain[J]. Genes Dev. 1999;13(10):1297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling[J]. Nature. 2010;465(7300):885–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nat Immunol. 2010;11(5):373–84.

    Article  CAS  PubMed  Google Scholar 

  9. Liu M, Hu Z, Wang C, et al. The TLR/MyD88 signalling cascade in inflammation and gastric cancer: the immune regulatory network of Helicobacter pylori[J]. J Mol Med (Berl). 2023;101:767–81.

    Article  CAS  PubMed  Google Scholar 

  10. Kim YC, Lee SE, Kim SK, et al. Toll-like receptor mediated inflammation requires FASN-dependent MYD88 palmitoylation[J]. Nat Chem Biol. 2019;15(9):907–16.

    Article  CAS  PubMed  Google Scholar 

  11. Yuan Q, Zhang J, Liu Y, et al. MyD88 in myofibroblasts regulates aerobic glycolysis-driven hepatocarcinogenesis via ERK-dependent PKM2 nuclear relocalization and activation[J]. J Pathol. 2022;256(4):414–26.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Liu Y, Chen H, et al. MyD88 in hepatic stellate cells enhances liver fibrosis via promoting macrophage M1 polarization[J]. Cell Death Dis. 2022;13(4):411.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bayer AL, Alcaide P. MyD88: at the heart of inflammatory signaling and cardiovascular disease[J]. J Mol Cell Cardiol. 2021;161:75–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Owen AM, Luan L, Burelbach KR, et al. MyD88-dependent signaling drives toll-like receptor-induced trained immunity in macrophages[J]. Front Immunol. 2022;13:1044662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dolcino M, Tinazzi E, Puccetti A, et al. In systemic sclerosis, a unique long non coding RNA regulates genes and pathways involved in the three main features of the disease (Vasculopathy, Fibrosis and Autoimmunity) and in carcinogenesis[J]. J Clin Med. 2019;8(3):320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brown GJ, Canete PF, Wang H, et al. TLR7 gain-of-function genetic variation causes human lupus[J]. Nature. 2022;605(7909):349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan Q, Gu J, Zhang J, et al. MyD88 in myofibroblasts enhances colitis-associated tumorigenesis via promoting macrophage M2 polarization[J]. Cell Rep. 2021;34(5): 108724.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu G, Cheng Z, Huang Y, et al. MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NF-kappaB/AP-1 signaling pathway[J]. Int J Mol Med. 2020;45(1):131–40.

    CAS  PubMed  Google Scholar 

  19. Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma[J]. Nature. 2011;470(7332):115–9.

    Article  CAS  PubMed  Google Scholar 

  20. Saikh KU. MyD88 and beyond: a perspective on MyD88-targeted therapeutic approach for modulation of host immunity[J]. Immunol Res. 2021;69(2):117–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-kappaB: a blossoming of relevance to human pathobiology[J]. Cell. 2017;168(1–2):37–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Loiarro M, Capolunghi F, Fanto N, et al. Pivotal advance: inhibition of MyD88 dimerization and recruitment of IRAK1 and IRAK4 by a novel peptidomimetic compound[J]. J Leukoc Biol. 2007;82(4):801–10.

    Article  CAS  PubMed  Google Scholar 

  23. Loiarro M, Sette C, Gallo G, et al. Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-kappaB[J]. J Biol Chem. 2005;280(16):15809–14.

    Article  CAS  PubMed  Google Scholar 

  24. Bartfai T, Behrens MM, Gaidarova S, et al. A low molecular weight mimic of the Toll/IL-1 receptor/resistance domain inhibits IL-1 receptor-mediated responses[J]. Proc Natl Acad Sci U S A. 2003;100(13):7971–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davis CN, Mann E, Behrens MM, et al. MyD88-dependent and -independent signaling by IL-1 in neurons probed by bifunctional Toll/IL-1 receptor domain/BB-loop mimetics[J]. Proc Natl Acad Sci U S A. 2006;103(8):2953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia[J]. N Engl J Med. 2012;367(9):826–33.

    Article  CAS  PubMed  Google Scholar 

  27. Olson MA, Lee MS, Kissner TL, et al. Discovery of small molecule inhibitors of MyD88-dependent signaling pathways using a computational screen[J]. Sci Rep. 2015;5:14246.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zou Z, Du D, Miao Y, et al. TJ-M2010-5, a novel MyD88 inhibitor, corrects R848-induced lupus-like immune disorders of B cells in vitro[J]. Int Immunopharmacol. 2020;85: 106648.

    Article  CAS  PubMed  Google Scholar 

  29. Li C, Zhang LM, Zhang X, et al. Short-term pharmacological Inhibition of MyD88 homodimerization by a novel inhibitor promotes robust allograft tolerance in mouse cardiac and skin transplantation[J]. Transplantation. 2017;101(2):284–93.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng XY, Sun CC, Liu Q, et al. Compound LM9, a novel MyD88 inhibitor, efficiently mitigates inflammatory responses and fibrosis in obesity-induced cardiomyopathy[J]. Acta Pharmacol Sin. 2020;41(8):1093–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song J, Chen D, Pan Y, et al. Discovery of a novel MyD88 inhibitor M20 and its protection against sepsis-mediated acute lung injury[J]. Front Pharmacol. 2021;12: 775117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu X, Hunter ZR, Xu L, et al. Targeting myddosome assembly in Waldenstrom Macroglobulinaemia[J]. Br J Haematol. 2017;177(5):808–13.

    Article  PubMed  Google Scholar 

  33. Loiarro M, Volpe E, Ruggiero V, et al. Mutational analysis identifies residues crucial for homodimerization of myeloid differentiation factor 88 (MyD88) and for its function in immune cells[J]. J Biol Chem. 2013;288(42):30210–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu BC, Wu GH, Shao ZQ, et al. Redox DAPK1 destabilizes Pellino1 to govern inflammation-coupling tubular damage during septic AKI[J]. Theranostics. 2020;10(25):11479–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu Y, Zhang XS, Zhang ZH, et al. Peroxiredoxin 2 activates microglia by interacting with Toll-like receptor 4 after subarachnoid hemorrhage[J]. J Neuroinflammation. 2018;15(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang X, Tan Y, Huang Z, et al. Disrupting myddosome assembly in diffuse large B-cell lymphoma cells using the MYD88 dimerization inhibitor ST2825[J]. Oncol Rep. 2019;42(5):1755–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramirez-Perez S, Hernandez-Palma LA, Oregon-Romero E, et al. Downregulation of inflammatory cytokine release from IL-1beta and LPS-stimulated PBMC Orchestrated by ST2825, a MyD88 Dimerisation inhibitor[J]. Molecules. 2020;25(18):4322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen J, Liu Y, Luo H, et al. Inflammation induced by lipopolysaccharide and palmitic acid increases cholesterol accumulation via enhancing myeloid differentiation factor 88 expression in HepG2 cells[J]. Pharmaceuticals (Basel). 2022;15(7):813.

    Article  CAS  PubMed  Google Scholar 

  39. Reuter S, Gupta SC, Chaturvedi MM, et al. Oxidative stress, inflammation, and cancer: how are they linked?[J]. Free Radic Biol Med. 2010;49(11):1603–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McGarry T, Biniecka M, Veale DJ, et al. Hypoxia, oxidative stress and inflammation[J]. Free Radic Biol Med. 2018;125:15–24.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang SS, Liu M, Liu DN, et al. ST2825, a small molecule inhibitor of MyD88, suppresses NF-kappaB activation and the ROS/NLRP3/cleaved caspase-1 signaling pathway to attenuate lipopolysaccharide-stimulated neuroinflammation[J]. Molecules. 2022;27(9):2990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guan Y, Li L, Kan L, et al. Inhalation of salvianolic acid B prevents fine particulate matter-induced acute airway inflammation and oxidative stress by downregulating the LTR4/MyD88/NLRP3 pathway[J]. Oxid Med Cell Longev. 2022;2022:5044356.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yue L, Qidian L, Jiawei W, et al. Acute iron oxide nanoparticles exposure induced murine eosinophilic airway inflammation via TLR2 and TLR4 signaling[J]. Environ Toxicol. 2022;37(4):925–35.

    Article  CAS  PubMed  Google Scholar 

  44. Qi M, Liao S, Wang J, et al. MyD88 deficiency ameliorates weight loss caused by intestinal oxidative injury in an autophagy-dependent mechanism[J]. J Cachexia Sarcopenia Muscle. 2022;13(1):677–95.

    Article  PubMed  Google Scholar 

  45. Jurcau A, Simion A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: from pathophysiology to therapeutic strategies[J]. Int J Mol Sci. 2021;23(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li W, Dong M, Chu L, et al. MicroRNA-451 relieves inflammation in cerebral ischemia-reperfusion via the Toll-like receptor 4/MyD88/NF-kappaB signaling pathway[J]. Mol Med Rep. 2019;20(4):3043–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang HS, Li H, Zhang DD, et al. Inhibition of myeloid differentiation factor 88(MyD88) by ST2825 provides neuroprotection after experimental traumatic brain injury in mice[J]. Brain Res. 2016;1643:130–9.

    Article  CAS  PubMed  Google Scholar 

  48. Xu YP, Tao YN, Wu YP, et al. Sleep deprivation aggravates brain injury after experimental subarachnoid hemorrhage via TLR4-MyD88 pathway[J]. Aging (Albany NY). 2021;13(2):3101–11.

    Article  CAS  PubMed  Google Scholar 

  49. Yan H, Zhang D, Wei Y, et al. Inhibition of myeloid differentiation primary response protein 88 provides neuroprotection in early brain injury following experimental subarachnoid hemorrhage[J]. Sci Rep. 2017;7(1):15797.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wei YX, Zhang DD, Gao YY, et al. Inhibition of the myeloid differentiation primary response protein 88 reducres neuron injury in the early stages of subarachnoid hemorrhage in an in vitro experimental model[J]. J Physiol Pharmacol. 2022. https://doi.org/10.1038/s41598-017-16124-8.

    Article  PubMed  Google Scholar 

  51. Wang N, Han X, Liu H, et al. Myeloid differentiation factor 88 is up-regulated in epileptic brain and contributes to experimental seizures in rats[J]. Exp Neurol. 2017;295:23–35.

    Article  CAS  PubMed  Google Scholar 

  52. Yao H, Hu C, Yin L, et al. Dioscin reduces lipopolysaccharide-induced inflammatory liver injury via regulating TLR4/MyD88 signal pathway[J]. Int Immunopharmacol. 2016;36:132–41.

    Article  CAS  PubMed  Google Scholar 

  53. Liu M, Xu Y, Han X, et al. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-kappaB signaling pathway[J]. Sci Rep. 2015;5:18038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qi M, Yin L, Xu L, et al. Dioscin alleviates lipopolysaccharide-induced inflammatory kidney injury via the microRNA let-7i/TLR4/MyD88 signaling pathway[J]. Pharmacol Res. 2016;111:509–22.

    Article  CAS  PubMed  Google Scholar 

  55. Qi M, Zheng L, Qi Y, et al. Dioscin attenuates renal ischemia/reperfusion injury by inhibiting the TLR4/MyD88 signaling pathway via up-regulation of HSP70[J]. Pharmacol Res. 2015;100:341–52.

    Article  CAS  PubMed  Google Scholar 

  56. Li T, Hai L, Liu B, et al. TLR2/4 promotes PGE(2) production to increase tissue damage in Escherichia coli-infected bovine endometrial explants via MyD88/p38 MAPK pathway[J]. Theriogenology. 2020;152:129–38.

    Article  CAS  PubMed  Google Scholar 

  57. Van Tassell BW, Seropian IM, Toldo S, et al. Pharmacologic inhibition of myeloid differentiation factor 88 (MyD88) prevents left ventricular dilation and hypertrophy after experimental acute myocardial infarction in the mouse[J]. J Cardiovasc Pharmacol. 2010;55(4):385–90.

    Article  PubMed  Google Scholar 

  58. Hernanz R, Martinez-Revelles S, Palacios R, et al. Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin II-induced hypertension[J]. Br J Pharmacol. 2015;172(12):3159–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramirez-Perez S, Oregon-Romero E, Reyes-Perez IV, et al. Targeting MyD88 downregulates inflammatory mediators and pathogenic processes in PBMC from DMARDs-naive rheumatoid arthritis patients[J]. Front Pharmacol. 2021;12: 800220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tsuchiya S, Yamabe M, Yamaguchi Y, et al. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1)[J]. Int J Cancer. 1980;26(2):171–6.

    Article  CAS  PubMed  Google Scholar 

  61. Huang YP, He TB, Cuan XD, et al. 1,4-beta-d-glucomannan from dendrobium officinale activates NF-small ka, cyrillicb via TLR4 to regulate the immune response[J]. Molecules. 2018;23(10):2658.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Long T, Liu Z, Shang J, et al. Polygonatum sibiricum polysaccharides play anti-cancer effect through TLR4-MAPK/NF-kappaB signaling pathways[J]. Int J Biol Macromol. 2018;111:813–21.

    Article  CAS  PubMed  Google Scholar 

  63. Feng Z, Wang Z, Yang M, et al. Polysaccharopeptide exerts immunoregulatory effects via MyD88-dependent signaling pathway[J]. Int J Biol Macromol. 2016;82:201–7.

    Article  CAS  PubMed  Google Scholar 

  64. Aringer M. Inflammatory markers in systemic lupus erythematosus[J]. J Autoimmun. 2020;110: 102374.

    Article  CAS  PubMed  Google Scholar 

  65. Capolunghi F, Rosado MM, Cascioli S, et al. Pharmacological inhibition of TLR9 activation blocks autoantibody production in human B cells from SLE patients[J]. Rheumatology (Oxford). 2010;49(12):2281–9.

    Article  CAS  PubMed  Google Scholar 

  66. Miller CL, Madsen JC. Targeting IL-6 to prevent cardiac allograft rejection[J]. Am J Transplant. 2022;22(4):12–7.

    Article  CAS  PubMed  Google Scholar 

  67. He WT, Zhang LM, Li C, et al. Short-term MyD88 inhibition ameliorates cardiac graft rejection and promotes donor-specific hyporesponsiveness of skin grafts in mice[J]. Transpl Int. 2016;29(8):941–52.

    Article  CAS  PubMed  Google Scholar 

  68. Schmitz R, Wright GW, Huang DW, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma[J]. N Engl J Med. 2018;378(15):1396–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu X, Li W, Deng Q, et al. MYD88 L265P mutation in lymphoid malignancies[J]. Cancer Res. 2018;78(10):2457–62.

    Article  CAS  PubMed  Google Scholar 

  70. Rodriguez S, Celay J, Goicoechea I, et al. Preneoplastic somatic mutations including MYD88(L265P) in lymphoplasmacytic lymphoma[J]. Sci Adv. 2022;8(3): l4644.

    Article  Google Scholar 

  71. Shiratori E, Itoh M, Tohda S. MYD88 inhibitor ST2825 suppresses the growth of lymphoma and leukaemia cells[J]. Anticancer Res. 2017;37(11):6203–9.

    CAS  PubMed  Google Scholar 

  72. Chen J, He J, Yang Y, et al. An analysis of the expression and function of myeloid differentiation factor 88 in human osteosarcoma[J]. Oncol Lett. 2018;16(4):4929–36.

    PubMed  PubMed Central  Google Scholar 

  73. Deng Y, Sun J, Zhang LD. Effect of ST2825 on the proliferation and apoptosis of human hepatocellular carcinoma cells[J]. Genet Mol Res. 2016;15(1):15016826.

    Article  CAS  PubMed  Google Scholar 

  74. Kajino-Sakamoto R, Fujishita T, Taketo MM, et al. Synthetic lethality between MyD88 loss and mutations in Wnt/beta-catenin pathway in intestinal tumor epithelial cells[J]. Oncogene. 2021;40(2):408–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Youth Program of National Natural Science Foundation of China (No. 81500169), the Hunan Province Key Laboratory of Tumour Cellular & Molecular Pathology (2016TP1015), and the Key Project of Hunan Provincial Health Commission (20201921).

Funding

This work was supported by the Youth Program of National Natural Science Foundation of China (Grant No. 81500169), the Hunan Provincial Groundbreaking Platform Open Fund of University of South China (Grant No. 19K080), and the Student Research Learning and Innovative Experimental Project of the University of South China (Grant Nos. 20155760439 and X2019141).

Author information

Authors and Affiliations

Authors

Contributions

ML is responsible for writing the article. WK and ZH are responsible for picture modification and article format adjustment. YZ and CW are responsible for the direction and core of the article.

Corresponding authors

Correspondence to Chengkun Wang or Yang Zhang.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflicts of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors have read and approved the publication of this article.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Kang, W., Hu, Z. et al. Targeting MyD88: Therapeutic mechanisms and potential applications of the specific inhibitor ST2825. Inflamm. Res. 72, 2023–2036 (2023). https://doi.org/10.1007/s00011-023-01801-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01801-4

Keywords

Navigation