Skip to main content

Advertisement

Log in

USP10 regulates macrophage inflammation responses via stabilizing NEMO in LPS-induced sepsis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Sepsis is a systemic inflammatory response syndrome characterized by persistent inflammation and immunosuppression, leading to septic shock and multiple organ dysfunctions. Ubiquitin-specific peptidase 10 (USP10), a deubiquitinase enzyme, plays a vital role in cancer and arterial restenosis, but its involvement in sepsis is unknown.

Objective

In this study, we investigated the significance of USP10 in lipopolysaccharide (LPS)-stimulated macrophages and its biological roles in LPS-induced sepsis.

Methods

Lipopolysaccharides (LPS) were used to establish sepsis models in vivo and in vitro. We use western blot to identify USP10 expression in macrophages. Spautin-1 and USP10-siRNA were utilized for USP10 inhibition. ELISA assays were used to assess for TNF‐α and IL-6 in vitro and in vivo. Nuclear and cytoplasmic protein extraction and Confocal microscopy were applied to verify the translocation of NF‐κB. Mechanically, co-immunoprecipitation and rescue experiments were used to validate the regulation of USP10 and NEMO.

Results

In macrophages, we found that LPS induced USP10 upregulation. The inhibition or knockdown of USP10 reduced the pro‐inflammatory cytokines TNF-α and IL-6 and suppressed LPS‐induced NF‐κB activation by regulating the translocation of NF‐κB. Furthermore, we found that NEMO, the regulatory subunit NF-κB essential modulator, was essential for the regulation of LPS-induced inflammation by USP10 in macrophages. NEMO protein evidently interacted with USP10, whereby USP10 inhibition accelerated the degradation of NEMO. Suppressing USP10 significantly attenuated inflammatory responses and improved the survival rate in LPS-induced sepsis mice.

Conclusions

Overall, USP10 was shown to regulate inflammatory responses by stabilizing the NEMO protein, which may be a potential therapeutic target for sepsis-induced lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17(7):407–20.

    Article  PubMed  Google Scholar 

  2. Zhang Q, Lenardo M, Baltimore D. 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell. 2017;168:37–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hayden M, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012;26(3):203–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harhaj EW, Dixit VM. Regulation of NF-kappaB by deubiquitinases. Immunol Rev. 2012;246(1):107–24.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miyamoto S. Nuclear initiated NF-κB signaling: NEMO and ATM take center stage. Cell Res. 2011;21(1):116–30.

    Article  CAS  PubMed  Google Scholar 

  6. McCool K, Miyamoto S. DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out. Immunol Rev. 2012;246(1):311–26.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Audry M, Ciancanelli M, Yang K, Cobat A, Chang H, Sancho-Shimizu V, et al. NEMO is a key component of NF-κB- and IRF-3-dependent TLR3-mediated immunity to herpes simplex virus. J Allergy Clin Immunol. 2011;128(3):610-7.e1-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tomar D, Singh R. TRIM13 regulates ubiquitination and turnover of NEMO to suppress TNF induced NF-κB activation. Cell Signal. 2014;26(12):2606–13.

    Article  CAS  PubMed  Google Scholar 

  9. Xing J, Weng L, Yuan B, Wang Z, Jia L, Jin R, et al. Identification of a role for TRIM29 in the control of innate immunity in the respiratory tract. Nat Immunol. 2016;17(12):1373–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shen M, Schmitt S, Buac D, Dou Q. Targeting the ubiquitin-proteasome system for cancer therapy. Expert Opin Ther Targets. 2013;17(9):1091–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rivkin E, Almeida S, Ceccarelli D, Juang Y, MacLean T, Srikumar T, et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature. 2013;498(7454):318–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee C, Kim S, Hwang G, Song J. Deubiquitinases: modulators of different types of regulated cell death. Int J Mol Sci. 2021;22(9):4352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luo P, Qin C, Zhu L, Fang C, Zhang Y, Zhang H, et al. Ubiquitin-specific peptidase 10 (USP10) inhibits hepatic steatosis, insulin resistance, and inflammation through Sirt6. Hepatology (Baltimore, MD). 2018;68(5):1786–803.

    Article  CAS  PubMed  Google Scholar 

  14. Liao Y, Liu N, Xia X, Guo Z, Li Y, Jiang L, et al. USP10 modulates the SKP2/Bcr-Abl axis via stabilizing SKP2 in chronic myeloid leukemia. Cell Discov. 2019;5:24.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tang X, Jiang H, Lin P, Zhang Z, Chen M, Zhang Y, et al. Insulin-like growth factor binding protein-1 regulates HIF-1α degradation to inhibit apoptosis in hypoxic cardiomyocytes. Cell Death Discov. 2021;7(1):242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gilmore T. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006;25(51):6680–4.

    Article  CAS  PubMed  Google Scholar 

  17. Perkins N. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007;8(1):49–62.

    Article  CAS  PubMed  Google Scholar 

  18. Niu J, Shi Y, Xue J, Miao R, Huang S, Wang T, et al. USP10 inhibits genotoxic NF-κB activation by MCPIP1-facilitated deubiquitination of NEMO. EMBO J. 2013;32(24):3206–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol. 2016;38(4):425–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mevissen TET, Komander D. Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem. 2017;86:159–92.

    Article  CAS  PubMed  Google Scholar 

  21. Harhaj EW, Dixit VM. Deubiquitinases in the regulation of NF-kappaB signaling. Cell Res. 2011;21(1):22–39.

    Article  CAS  PubMed  Google Scholar 

  22. Park CW, Ryu KY. Cellular ubiquitin pool dynamics and homeostasis. BMB Rep. 2014;47(9):475–82.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bhattacharya U, Neizer-Ashun F, Mukherjee P, Bhattacharya R. When the chains do not break: the role of USP10 in physiology and pathology. Cell Death Dis. 2020;11(12):1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Deng M, Yang X, Qin B, Liu T, Zhang H, Guo W, et al. Deubiquitination and activation of AMPK by USP10. Mol Cell. 2016;61(4):614–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim R, Sugino T, Nolte H, Andrade J, Zimmermann B, Shi C, et al. Deubiquitinase USP10 regulates Notch signaling in the endothelium. Science. 2019;364(6436):188–93.

    Article  CAS  PubMed  Google Scholar 

  26. Miloudi K, Oubaha M, Menard C, Dejda A, Guber V, Cagnone G, et al. NOTCH1 signaling induces pathological vascular permeability in diabetic retinopathy. Proc Natl Acad Sci USA. 2019;116(10):4538–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin Z, Yang H, Tan C, Li J, Liu Z, Quan Q, et al. USP10 antagonizes c-Myc transcriptional activation through SIRT6 stabilization to suppress tumor formation. Cell Rep. 2013;5(6):1639–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao F, Qian M, Liu G, Ao W, Dai D, Yin C. USP10 alleviates sepsis-induced acute kidney injury by regulating Sirt6-mediated Nrf2/ARE signaling pathway. J Inflamm (Lond, Engl). 2021;18(1):25.

    Article  CAS  Google Scholar 

  29. Wang W, Huang X, Xin H, Fu M, Xue A, Wu Z. TRAF family member-associated NF-κB Activator (TANK) inhibits genotoxic nuclear factor κB activation by facilitating deubiquitinase USP10-dependent deubiquitination of TRAF6 ligase. J Biol Chem. 2015;290(21):13372–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Napetschnig J, Wu H. Molecular basis of NF-κB signaling. Annu Rev Biophys. 2013;42:443–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murray P, Allen J, Biswas S, Fisher E, Gilroy D, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hayden M, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132(3):344–62.

    Article  CAS  PubMed  Google Scholar 

  33. Iwai K. Diverse roles of the ubiquitin system in NF-κB activation. Biochem Biophys Acta. 2014;1843(1):129–36.

    Article  CAS  PubMed  Google Scholar 

  34. Ko M, Cohen S, Polley S, Mahata S, Biswas T, Huxford T, et al. Regulatory subunit NEMO promotes polyubiquitin-dependent induction of NF-κB through a targetable second interaction with upstream activator IKK2. J Biol Chem. 2022;298(5): 101864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Imai T, Van T, Pasparakis M, Polykratis A. Smooth muscle cell specific NEMO deficiency inhibits atherosclerosis in ApoE mice. Sci Rep. 2022;12(1):12538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zilberman-Rudenko J, Shawver L, Wessel A, Luo Y, Pelletier M, Tsai W, et al. Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-κB activation and autoinflammatory disease. Proc Natl Acad Sci USA. 2016;113(6):1612–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang Z, Xian H, Hu J, Tian S, Qin Y, Wang R, et al. USP18 negatively regulates NF-κB signaling by targeting TAK1 and NEMO for deubiquitination through distinct mechanisms. Sci Rep. 2015;5:12738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li T, Guan J, Li S, Zhang X, Zheng X. HSCARG downregulates NF-κB signaling by interacting with USP7 and inhibiting NEMO ubiquitination. Cell Death Dis. 2014;5: e1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation for Young Scientists of China (82000410); the Key Medical Disciplines and Specialties Program of Guangzhou(2021-2023); the Medical Scientific Research Foundation of Guangdong Province (A2022049); the Science and Technology Program of Meizhou (2019B0202001, 2021B0204002); the Social Development Science and Technology Program Project of Meizhou (2022B01); the Scientific Research and Cultivation Project of Meizhou People’s Hospital (PY-C2021047).

Author information

Authors and Affiliations

Authors

Contributions

ZXZ and XHC designed the experiments. XYT, RQW, GXG, XQW, JXW and SDL performed the experiments and analyzed the data. XYT, ZXZ and XHC wrote the manuscript. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Zhixiong Zhong or Xiaohui Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Responsible Editor: L Li

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Weng, R., Guo, G. et al. USP10 regulates macrophage inflammation responses via stabilizing NEMO in LPS-induced sepsis. Inflamm. Res. 72, 1621–1632 (2023). https://doi.org/10.1007/s00011-023-01768-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01768-2

Keywords

Navigation